Aparato experimental para medidas de atividade óptica da sacarose usando um amplificador Lock-in
Resumo
Texto completo:
PDFReferências
Hecht, E. (2017). Optics (5th ed., Global Edition). Harlow: Pearson Education Limited.
Saxon, C., Brindley, S., Jervis, N., Jones, G. R., Morgan, E. D., & Ramsden, C. A. (2002). The World’s First Pastarime-ter: An Analogous Demonstration of Polarimetry Using Pasta Fusilli. J. Chem. Educ, 79(10), 1214.
Mason, S. F. (2009). Molecular optical activity and the chiral discriminations. Cambridge: Cambridge University Press. ISBN: 978-0521105637.
Willey, E. J. (1943). A Photoelectric Polarimeter. Journal of Scientific Instruments,20(5), 74-75. doi:10.1088/0950-7671/20/5/302.
MICROCHIP, AN1494 - Using MCP6491 Op. Amps for Photodetection Applications, textbf{(PDF)}.
ALBUQUERQUE, Marcelo P., RESENDE, Leonardo C., GONZALEZ Jorge L., NUNES, Rafael A. A., BOCHNER, Maur´ıcio (2011). Introduc¸ ˜ao ao Amplificador Lock-In e Prototipac¸ ˜ao em Hardware Reconfigur´avel. CBPF, Notas T´ecnicas, v. 1, n. 1, p. 1-6, 2011. doi: 10.7437/NT2236-7640.2011.01.001.
Clarkson, P., Esward, T. J., Harris, P. M., Smith, A. A., & Smith, I. M. (2010). Software simulation of a lock-in amplifier with application to the evaluation of uncertainties in real measuring systems. Measurement Science and Technol-ogy,21(4), 045106. doi:10.1088/0957-0233/21/4/045106.
Bengtsson, L. E. (2012). A microcontroller-based lock-in amplifier for sub-milliohm resistance measure-ments. Review of Scientific Instruments, 83(7), 075103. doi:10.1063/1.4731683.
Li, G., Zhou, M., He, F., & Lin, L. (2011). A novel algorithm combining oversampling and digital lock-in ampli-fier of high speed and precision. Review of Scientific Instru-ments,82(9), 095106. doi:10.1063/1.3633943.
MICROCHIP, AN1115 - Implementing Digital Lock-In Amplifiers Using the dsPIC DSC. textbf{(PDF)} (acesso em marc¸o de 2017).
Dorrington, A., & Kunnemeyer, R. (2002). A simple microcontroller based digital lock-in amplifier for the detection of low level optical signals. Proceedings First IEEE Interna-tional Workshop on Electronic Design, Test and Applications 2002. doi:10.1109/delta.2002.994680.
Aguirre, J., Medrano, N., Calvo, B., & Celma, S. (2011). Lock-in amplifier for portable sensing systems. Electronics Letters,47(21), 1172. doi:10.1049/el.2011.2472.
Armen, G. B. (2008). Phase sensitive detection: the lock-in amplifier. Department of Physics and Astronomy, The Uni-versity of Tennessee.
Wolfson, R. (1991). The lock in amplifier: A student xperiment. American Journal of Physics, 59(6), 569-572.
doi:10.1119/1.16824.
Scofield, J. H. (1994). Frequency domain description of a lock in amplifier. American Journal of Physics,62(2), 129- 133. doi:10.1119/1.17629.
Oguz, Osman, (2002). A Lock-In Amplifier for Fluorescent Light Detection. Master’s Thesis, University of Tennessee.
Sonnaillon, M. O., & Bonetto, F. J. (2005). A low-cost, high-
performance, digital signal processor-based lock-in am-plifier capable of measuring multiple frequency sweeps simultaneously. Review of Scientific Instruments,76(2), 024703. doi:10.1063/1.1854196.
Alonso, R., Villuendas, F., Borja, J., Barrag N, L. A., & Salinas, I. (2003). Low-cost, digital lock-in module with ex-ternal reference for coating glass transmission/reflection spectrophotometer. Measurement Science and Technol-ogy,14(5), 551-557. doi:10.1088/0957-0233/14/5/303.
Spears, B. K., & Tufillaro, N. B. (2008). A chaotic lock-in amplifier. American Journal of Physics,76(3), 213-217. doi:10.1119/1.2835055.
Fu, S., Sakurai, A., Liu, L., Edman, F., Pullerits, T., Owall, V., & Karki, K. J. (2013). Generalized lock-in amplifier for precision measurement of high frequency signals. Review of Scientific Instruments,84(11), 115101. doi:10.1063/1.4827085.
Li, Gang, et al (2013). A method to remove odd harmonic interferences in square wave reference digital lock-in amplifier. Review of Scientific Instruments,84(2), 025115. doi:10.1063/1.4792596.
Clarkson, P., Esward, T. J., Harris, P. M., Smith, A. A., & Smith, I. M. (2010). Software simulation of a lock-in ampli-fier with application to the evaluation of uncertainties in real measuring systems. Measurement Science and Technol-ogy, 21(4), 045106. doi:10.1088/0957-0233/21/4/045106.
Darveau, S. A., Mueller, J., Vaverka, A., Barta, C., Fitch, A., Jurzenski, J., & Gindt, Y. (2004). A modular laser apparatus for polarimetry, nephelometry, and fluorimetry in general chemistry. J. Chem. Educ, 81(3), 401.
Patterson, L. H., Kihlstrom, K. E., & Everest, M. A. (2015). Balanced polarimeter: A cost-effective approach for measuring the polarization of light. American Journal of Physics, 83(1), 91-94. doi:10.1119/1.4896747.
Lisboa, P., Sotomayor, J., & Ribeiro, P. (2010). A New Cost-Effective Diode Laser Polarimeter Apparatus Constructed by Undergraduate Students. Journal of Chemical Education, 87(12), 1408-1410. doi:10.1021/ed100530f.
FISHER, D.K.; GOULD, P.J. Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research, Modern Instrumentation, 2012, 1, 8-20.
HARNETT,C. Open Source Hardware for Instrumentation and Measurement, IEEE, Instrumentation & Measurement Magazine, (2011).
BONACCORSI, A.; ROSSI, C. Why Open Source software can succeed, Research Policy, 32, 2003, pp. 1243–1258.