Apresentação de uma ferramenta tecnológica para a caracterização elétrica de sensores de pH do tipo EGFET
Resumo
Palavras-chave
Texto completo:
PDFReferências
Fernandes C. et al , emph{Eletrodos íons-seletivos: Histórico, mecanismos de resposta, seletividade e revisão dos conceitos}
,Quim. Nova, Vol. 24, No. 1, 120-130, 2001.
Miao Yuqing and at al, emph{New technology for the detection of pH}, J. Biochem. Biophy. Methods
(2005) 1-9.
%Bergveld
Bergveld, P., emph{Development of an ion-sensitive solid-state device for neurophysiological measurements}, IEEE Trans Biomet. Engineering, 1970, 17, 70.
Bergveld, P., emph{The future of Biosesnosr}, Sensors and Actuators A 56 (1996) 65-73
bibitem{REF05} Bergggeld, P. emph{Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the net 30 years}, Sensors and Actuators B (88) 1-20.
%ISFET application
Chaubey A. et al., emph{Mediated Biosensors}, Biosensors & Biolectronics 17 (2002) 441-456.
Thévenot, D. R. and et al., emph{Electrochemical biosensors: recommended definititions and calssifications}, Biosensors & Biolectronics, 16 (2001) 121-131
Cunningham, A. J., emph{Introduction to Bionalytical Sensors}. pp 2006 (1998)
Cass, A.E.G , emph{Biosensors: A pratical approach}. pp 171 (1990).
Malhotra, B. D. and et al. emph{Biosensors for clinical diagnostics industry}, Sensors and Actuators B 6931 (2003).
Schoning, M. J. and et al., emph{Recent advances in biologically sensitive field-effect transistor}, Analyst 127 (2002) 1137-1151.
Yuqing. M and et al, emph{Ion sensitive field effect transducer based biosensors}, Biotechnology Advances 21 (2003) 527-534.
%EGFET
Spiegel, J Van Der and et al., emph{The extended gate chemically sensitive field effect transistor as multi-species microprobe}, Sensors and Actuators 4 (1983) 291-298.
Yin, L. and at el., emph{Separate structure extended gate H+ ion sensitive field effect transistor on a glass substrate}, Sensor and Actuators B 71 (2000) 106-111.
Chi, L. and at el., emph{Study on extended gate field effect transistor with tin oxide sensing membrane}, Materials Chemistry and Physics 63 (2000) 19-23.
Yin, L.T, and et al.,emph{Study of indium tin oxide thin film for separative extended gate ISFET}, Materials Chemistry and Physics 70 (2001) 12-16.
Chou, J.C, and et al., emph{$SnO_{2}$ Sepratative Structure Extended Gte H+-Ion Sensitive Field Effect Transistor by Sol-Gel Technology and Readout Circuit Developed by Source Follower.} Journal Applied Physics Vol 42 (2003) pp 6790-6794.
%Auto citação
Batista, P.D. and et al., emph{ZnO Extended-gate field-effect transistor as pH
sensors}, Applied Physics Letter 87, 1435508 (2005)
Batista, P.D. and et al., emph{$SnO_{2}$ Extended Gate Field-Effect Transistor as pH sensor}, Brazilian Journal of Physics, vol 36, no 2A (2006).
Batista, P.D and et al., emph{Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor}, Journal Material Science (2010) 45:5478-5481.
%EGFET Application
Chi, L.Land et al., emph{Study on separative structure of EnFet to detect acetylcholine}, Sensor and Actuators B 71 (2000) 68-72
Chen, J.C and et al., emph{Portable urea biosensor on the extended gate field effec transistor.}, Sensors and Actuators B 91 (2003) 180-186.
%ZnO as pH sensor - 14 - 26
Al-Hilli, S.A and et. al., emph{ZnO nanorods as an intracellular sensor for pH measurements}, Micro and Nano Technologies in Bioanalysis Methods in Molecular Biology. Vol: 544, 2009, pp 187-200.
Chiu, Y.S. and et al.,emph{pH Sensor Investigation of Various-Length Photoelectrochemical Passivated ZnO Nanorod Arrays}, Journal of the Electrochemical Society, 2011.
Chang S.P. and et al., emph{ZnO-Nanowire-Based Extended-Gate Field-Effect-Transistor pH Sensors Prepared on Glass Substrate}, Science of Advanced Materials, 2012.
Chiu Y.S. and et al., emph{Nanostructured EGFET pH Sensors With Surface-Passivated ZnO Thin-Film and Nanorod Array}, Sensors Journal, IEEE, 2012.
Li, H.H and et al., emph{Coaxial-structured ZnO-silicon nanowires extended-gate field-effect transistor as pH sensor}, Thin Solid Films. Elsevier: 2013.
Huang, B.R. and et al., emph{ZnO-Silicon Nanowire Hybrids Extended-Gate Field-Effect Transistors as pH Sensors}, Journal of The Electrochemical Society, 2013.
Lee, C.T. and et al., emph{Integrated pH Sensors and Performance Improvement Mechanism of ZnO-Based Ion-Sensitive Field-Effect Transistors}, Sensors Journal, 2014.
Maiolo,L.et al., emph{Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls}, Applied Physics Letters, 2014.
Yang, P.Y. and et al., emph{pH Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Al-Doped ZnO Nanostructures Hydrothermally Synthesized at Low Temperatures}, Device Letters, IEEE, 2011.
Lee, C.T. and et al., emph{Investigation of a Photo electrochemical Passivated ZnO-Based Glucose Biosensor}, Sensors 2011, 11, 4648-4655.
Chiu, Y.S. et al., emph{Wide linear sensing sensors using ZnO:Ta extended-gate field-effect-transistors}, Sensors and Actuators B. Elsevier: Chemical, vol 188, November 2013, pp 944-948.
% pH sensor instrumentation
Kokot, M. et al., emph{Excitation-independent constant conductance ISFET Driver}, Metrology
and Measurement Systems Vol. XVI (2009), No 4, pp. 631-640.
Abdul, R.R. et al., emph{Operation of ISFET as a pH sensor by using signal modulated reference
electrode}, International Conference on Information and Multimedia Technology (2009).
-550
Batista P.D., emph{An embedded measurement system for the electrical characterization of EGFET as a pH sensor}, Measurement Science and Technology 25 (2014) 027001 (6pp).
D.L. Chinaglia et al., emph{Espectroscopia de impedância no laboratório de ensino}, Revista Brasileira de Ensino de Física, v. 30, n. 4, 4504 (2008).
J. Castello et al., emph{A PC-based low cost impedance and gain-phase analyzer}, Measurement Vol 41, Issue 6, (2008), 631-636;
J. R. Noriega et al., emph{Automation Of An I-V Characterization System}, Departamento de Investigación en Física,Universidad de Sonora Vol.8 No.2 August 2010.
% Open Source Hardware
Pearce,J.M. emph{Building Research Equipment with Free, Open-Source Hardware}, Science, Vol: 337, 14 September 2012.
Fisher, D.K. et al., emph{Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research}, Modern Instrumentation, 2012, 1, 8-20.
Harnett,C. emph{Open Source Hardware for Instrumentation and Measurement}, IEEE, Instrumentation & Measurement Magazine, (2011).
Purdon,P.L. et al., emph{An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI}, Journal of Neuroscience Methods, 175, 2008, pp. 165–186.
Christian,W. et al., emph{Open Source Physics}, Science, Vol: 334, 25 November 2011.
Pearce,J.M. Commentary: emph{Open-source hardware for research and education}, Physics Today, 66, (11), 8, 2013, doi: 10.1063/PT.3.2160.
Anzalone,G.C. et al., emph{Open-Source Colorimeter}, Sensors, 2013, 13, 5338-5346.
Koenka,I.J. et al., emph{Instrumentino: An open-source modular Python framework for controlling Arduino based experimental instruments}, Computer Physics Communications, 185, 2014, pp. 2724–2729.
Rorden,C.et al., emph{Open-source hardware for behavioral and MRI experiments}, Journal of Neuroscience Methods, 227, 2014, pp. 90–99.
Urban,P.L. emph{Open-Source Electronics As a Technological Aid in Chemical Education},. J Chem. Educ. 2014, 91, pp. 751−752.
Wijnen,B.et al., emph{Open-Source Syringe Pump Library}, PLOS ONE, September 2014,v. 9,n. 9.
Van Der Bij,E. et al. emph{How to create successful Open Hardware projetcts}, Topical Workshop on Electronics for Particle Physics, 2013, 23–27 september 2013,perugia, Italy.
Bonaccorsi, A.et al., emph{Why Open Source software can succeed}, Research Policy, 32, 2003, pp. 1243–1258.
Kelley,C.D. et al., emph{An Affordable Open-Source Turbidimeter}, Sensors, 2014, 14, 7142-7155.