Apresentação de uma ferramenta tecnológica para a caracterização elétrica de sensores de pH do tipo EGFET

Pablo Diniz Batista, Edgar Monteiro da Silva

Resumo


A medida de pH encontra diversas aplicações na sociedade. O valor dessa grandeza em uma solução aquosa pode ser obtida facilmente utilizando um eletrodo de vidro. Porém, nas últimas décadas observa-se o interesse pela pesquisa científica e o desenvolvimento tecnológico de sensores de pH a partir de transistores de efeito de campo principalmente devido ao seu potencial uso na área de biosensores com aplicações, por exemplo, em áreas como a Medicina e a Biologia. Nesse caso, as medidas elétricas são fundamentais durante as diversas etapas de otimização desse sensor. Portanto, apresentamos neste trabalho detalhes de uma instrumentação científica desenvolvida para realizar diversas medidas de caracterização elétrica comumente utilizadas durante a fabricação e a pesquisa científica dos sensores de pH do tipo EGFET. Finalmente, destacamos que tanto o hardware como o software apresentados nesse trabalho serão disponibilizados apostando no paradigma \textsl{open source hardware.

Palavras-chave


EGFET, sensor de pH, instrumentação científica

Texto completo:

PDF

Referências


Fernandes C. et al , emph{Eletrodos íons-seletivos: Histórico, mecanismos de resposta, seletividade e revisão dos conceitos}

,Quim. Nova, Vol. 24, No. 1, 120-130, 2001.

Miao Yuqing and at al, emph{New technology for the detection of pH}, J. Biochem. Biophy. Methods

(2005) 1-9.

%Bergveld

Bergveld, P., emph{Development of an ion-sensitive solid-state device for neurophysiological measurements}, IEEE Trans Biomet. Engineering, 1970, 17, 70.

Bergveld, P., emph{The future of Biosesnosr}, Sensors and Actuators A 56 (1996) 65-73

bibitem{REF05} Bergggeld, P. emph{Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the net 30 years}, Sensors and Actuators B (88) 1-20.

%ISFET application

Chaubey A. et al., emph{Mediated Biosensors}, Biosensors & Biolectronics 17 (2002) 441-456.

Thévenot, D. R. and et al., emph{Electrochemical biosensors: recommended definititions and calssifications}, Biosensors & Biolectronics, 16 (2001) 121-131

Cunningham, A. J., emph{Introduction to Bionalytical Sensors}. pp 2006 (1998)

Cass, A.E.G , emph{Biosensors: A pratical approach}. pp 171 (1990).

Malhotra, B. D. and et al. emph{Biosensors for clinical diagnostics industry}, Sensors and Actuators B 6931 (2003).

Schoning, M. J. and et al., emph{Recent advances in biologically sensitive field-effect transistor}, Analyst 127 (2002) 1137-1151.

Yuqing. M and et al, emph{Ion sensitive field effect transducer based biosensors}, Biotechnology Advances 21 (2003) 527-534.

%EGFET

Spiegel, J Van Der and et al., emph{The extended gate chemically sensitive field effect transistor as multi-species microprobe}, Sensors and Actuators 4 (1983) 291-298.

Yin, L. and at el., emph{Separate structure extended gate H+ ion sensitive field effect transistor on a glass substrate}, Sensor and Actuators B 71 (2000) 106-111.

Chi, L. and at el., emph{Study on extended gate field effect transistor with tin oxide sensing membrane}, Materials Chemistry and Physics 63 (2000) 19-23.

Yin, L.T, and et al.,emph{Study of indium tin oxide thin film for separative extended gate ISFET}, Materials Chemistry and Physics 70 (2001) 12-16.

Chou, J.C, and et al., emph{$SnO_{2}$ Sepratative Structure Extended Gte H+-Ion Sensitive Field Effect Transistor by Sol-Gel Technology and Readout Circuit Developed by Source Follower.} Journal Applied Physics Vol 42 (2003) pp 6790-6794.

%Auto citação

Batista, P.D. and et al., emph{ZnO Extended-gate field-effect transistor as pH

sensors}, Applied Physics Letter 87, 1435508 (2005)

Batista, P.D. and et al., emph{$SnO_{2}$ Extended Gate Field-Effect Transistor as pH sensor}, Brazilian Journal of Physics, vol 36, no 2A (2006).

Batista, P.D and et al., emph{Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor}, Journal Material Science (2010) 45:5478-5481.

%EGFET Application

Chi, L.Land et al., emph{Study on separative structure of EnFet to detect acetylcholine}, Sensor and Actuators B 71 (2000) 68-72

Chen, J.C and et al., emph{Portable urea biosensor on the extended gate field effec transistor.}, Sensors and Actuators B 91 (2003) 180-186.

%ZnO as pH sensor - 14 - 26

Al-Hilli, S.A and et. al., emph{ZnO nanorods as an intracellular sensor for pH measurements}, Micro and Nano Technologies in Bioanalysis Methods in Molecular Biology. Vol: 544, 2009, pp 187-200.

Chiu, Y.S. and et al.,emph{pH Sensor Investigation of Various-Length Photoelectrochemical Passivated ZnO Nanorod Arrays}, Journal of the Electrochemical Society, 2011.

Chang S.P. and et al., emph{ZnO-Nanowire-Based Extended-Gate Field-Effect-Transistor pH Sensors Prepared on Glass Substrate}, Science of Advanced Materials, 2012.

Chiu Y.S. and et al., emph{Nanostructured EGFET pH Sensors With Surface-Passivated ZnO Thin-Film and Nanorod Array}, Sensors Journal, IEEE, 2012.

Li, H.H and et al., emph{Coaxial-structured ZnO-silicon nanowires extended-gate field-effect transistor as pH sensor}, Thin Solid Films. Elsevier: 2013.

Huang, B.R. and et al., emph{ZnO-Silicon Nanowire Hybrids Extended-Gate Field-Effect Transistors as pH Sensors}, Journal of The Electrochemical Society, 2013.

Lee, C.T. and et al., emph{Integrated pH Sensors and Performance Improvement Mechanism of ZnO-Based Ion-Sensitive Field-Effect Transistors}, Sensors Journal, 2014.

Maiolo,L.et al., emph{Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls}, Applied Physics Letters, 2014.

Yang, P.Y. and et al., emph{pH Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Al-Doped ZnO Nanostructures Hydrothermally Synthesized at Low Temperatures}, Device Letters, IEEE, 2011.

Lee, C.T. and et al., emph{Investigation of a Photo electrochemical Passivated ZnO-Based Glucose Biosensor}, Sensors 2011, 11, 4648-4655.

Chiu, Y.S. et al., emph{Wide linear sensing sensors using ZnO:Ta extended-gate field-effect-transistors}, Sensors and Actuators B. Elsevier: Chemical, vol 188, November 2013, pp 944-948.

% pH sensor instrumentation

Kokot, M. et al., emph{Excitation-independent constant conductance ISFET Driver}, Metrology

and Measurement Systems Vol. XVI (2009), No 4, pp. 631-640.

Abdul, R.R. et al., emph{Operation of ISFET as a pH sensor by using signal modulated reference

electrode}, International Conference on Information and Multimedia Technology (2009).

-550

Batista P.D., emph{An embedded measurement system for the electrical characterization of EGFET as a pH sensor}, Measurement Science and Technology 25 (2014) 027001 (6pp).

D.L. Chinaglia et al., emph{Espectroscopia de impedância no laboratório de ensino}, Revista Brasileira de Ensino de Física, v. 30, n. 4, 4504 (2008).

J. Castello et al., emph{A PC-based low cost impedance and gain-phase analyzer}, Measurement Vol 41, Issue 6, (2008), 631-636;

J. R. Noriega et al., emph{Automation Of An I-V Characterization System}, Departamento de Investigación en Física,Universidad de Sonora Vol.8 No.2 August 2010.

% Open Source Hardware

Pearce,J.M. emph{Building Research Equipment with Free, Open-Source Hardware}, Science, Vol: 337, 14 September 2012.

Fisher, D.K. et al., emph{Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research}, Modern Instrumentation, 2012, 1, 8-20.

Harnett,C. emph{Open Source Hardware for Instrumentation and Measurement}, IEEE, Instrumentation & Measurement Magazine, (2011).

Purdon,P.L. et al., emph{An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI}, Journal of Neuroscience Methods, 175, 2008, pp. 165–186.

Christian,W. et al., emph{Open Source Physics}, Science, Vol: 334, 25 November 2011.

Pearce,J.M. Commentary: emph{Open-source hardware for research and education}, Physics Today, 66, (11), 8, 2013, doi: 10.1063/PT.3.2160.

Anzalone,G.C. et al., emph{Open-Source Colorimeter}, Sensors, 2013, 13, 5338-5346.

Koenka,I.J. et al., emph{Instrumentino: An open-source modular Python framework for controlling Arduino based experimental instruments}, Computer Physics Communications, 185, 2014, pp. 2724–2729.

Rorden,C.et al., emph{Open-source hardware for behavioral and MRI experiments}, Journal of Neuroscience Methods, 227, 2014, pp. 90–99.

Urban,P.L. emph{Open-Source Electronics As a Technological Aid in Chemical Education},. J Chem. Educ. 2014, 91, pp. 751−752.

Wijnen,B.et al., emph{Open-Source Syringe Pump Library}, PLOS ONE, September 2014,v. 9,n. 9.

Van Der Bij,E. et al. emph{How to create successful Open Hardware projetcts}, Topical Workshop on Electronics for Particle Physics, 2013, 23–27 september 2013,perugia, Italy.

Bonaccorsi, A.et al., emph{Why Open Source software can succeed}, Research Policy, 32, 2003, pp. 1243–1258.

Kelley,C.D. et al., emph{An Affordable Open-Source Turbidimeter}, Sensors, 2014, 14, 7142-7155.