Classical and quantum analysis of a hetero-triatomic molecular Bose-Einstein condensate model

A.P. Tonel, C.C.N. Kuhn, G. Santos, A. Foerster, I. Roditi, Z.V.T. Santos

Resumo


Abstract: We investigate an integrable Hamiltonian modelling a hetero-triatomic -molecular
Bose-Einstein condensate. This model describes a mixture of two species of atoms in different proportions, which can combine to form a triatomic  molecule. Beginning with a classical analysis, we determine the fixed points of the system. Bifurcations of these points separate the parameter space into different  regions. Three distinct senarios are found, varying with the atomic population imbalance. This result suggests the ground state properties of the quantum model exhibits a sensitivity on the atomic population imbalance, which is confirmed by a quantum analysis using different  approaches, such as the ground-state expectation values, the behaviour of the quantum dynamics, the energy gap and the ground state fidelity.

Texto completo:

PDF

Referências


Referência:

E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74 (2002) 875.

J. R. Anglin and W. Ketterle, Nature 416, (2002) 211.

D. J. Heinzen, R. Wynar, P. D. Drummond, and K. V. Kheruntsyan, Phys. Rev. Lett. 84, (2000) 5029.

P. Zoller, Nature 417 (2002) 493.

S. B. Papp and C. E. Wieman, Phys. Rev. Lett. 97, (2006) 1804049.

G. Thalhammer, G. Barontini, L.D. Sarlo, J. Catani, F. Minardi and M. Ignusio,

Phys. Rev. Lett. 100 (2008) 210402.

J. Catani, L.D. Sarlo, G. Barontini, F. Minardi and M. Ignusio, Phys. Rev. A77

(2008) 011603(R).

B. Damski, L. Santos, E. Tiemann, M. Lewenstein, S. Kotohigova,P. Julienne, and P. Zoller, Phys. Rev. Lett. 90 (2003) 110401.

J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H.-C. Nagerl and R. Grimm,Siene 301 (2003) 1510

T. Weber, J. Herbig, M. Mark, H.-C. Nagerl and R. Grim, Phys. Rev. Lett. 91 (2003)123201.

T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange,K. Pilh, A. Jaakkola, H.-C. Nagerl, R. Grimm, Nature 440,(2006) 315.

H.-Q. Zhou, J. Links, M. Gould and R. M Kenzie, J. Math. Phys. 44 (2003) 4690.

J. Links, H.-Q. Zhou, R. H. M Kenzie and M. D. Gould, J. Phys. A36 (2003) R63;

H.-Q. Zhou, J. Links, R. H. M Kenzie and X.-W. Guan, J. Phys. A36 (2003) L113;

A. Foerster, J. Links, H.-Q. Zhou, in Classial and quantum non linear integrable

systems: theory and appliations, edited by A. Kundu (IOP Publishing, Bristol and

Philadelphia, 2003) pp. 208-233.

J. Dukelsky, G. Dussel, C. Esebbag and S. Pittel, Phys. Rev. Lett. 93 (2004) 050403

G. Ortiz, R. Somma, J. Dukelsky and S. Rombouls, Nulear Physis B707 (2005)421.

A. Kundu, Theoretial and Mathematial Physis 151 (2007) 831.

A. Foerster and E. Ragouy, Nulear Physis B777 (2007) 373.

J. Li, D.-F. Ye, C. Ma, L.-B. Fu and J. Liu, arXiv:0807.1691.

X-J. Liu, H. Hui, P.D. Drummond, Phys. Rev. A77 (2008) 013622.

M. Héritier, Nature 414 (2001) 31.

M. T. Bathelor, Physis Today 60 (2007) 36.

F. Ferlaino, S. Knoop and R. Grimm, arXiv:0809.3920.

J. Catani, Private communiation related to work in ollaboration with G. Barontini,

F. Rabati, G. Talhammer, C. Weber, F. Minardi and M. Ingusio.

G. Santos, A. Foerster, I. Roditi, Z. Santos and A. Tonel, J. Phys. A: Math. Theor.41 (2008) 295003.

M. Dunan, A. Foerster, J. Links, E. Mattei, N. Oelkers and A. Tonel, Nulear Phys.B767 (2007) 227.

L. Zhou, J. Qian, H. Pu, W. Zhang and H. Y. Ling, arXiv:0809.0040.

L. Zhou, W. Zhang and H. Y. Ling, L. Jiang and H. Pu , Phys. Rev. A75 (2007)043603.

S. Sadhev, Quantum Phase Transitions, Cambridge University Press (2001)

A. P. Tonel, J. Links and A. Foerster, J. Phys. A: Math. Gen. 38, (2005) 1235.

A. P. Tonel, J. Links, and A. Foerster, J. Phys. A: Math. Gen. 38, (2005) 6879.

M.A. Nielsen and I.L.Chuang, Quantum computation and quantum information,Cambridge University Press (2000)

H-Q. Zhou and J. P. Barjaktarevi,cond-mat/0701608.

P. Buonsante and A. Vezzani, Phys. Rev. Lett. 98 (2007) 110601


Apontamentos

  • Não há apontamentos.