Echo spectroscopy of Anderson localization

T. Micklitz, C.A. Muller, A. Altland

Resumo


We propose a conceptually new framework to study the onset of Anderson localization in disordered
systems. The idea is to expose waves propagating in a random scattering environment to
a sequence of short dephasing pulses. The system responds through coherence peaks forming at
specic echo times, each echo representing a particular process of quantum interference. We suggest
a concrete realization for cold gases, where quantum interferences are observed in the momentum
distribution of matter waves in a laser speckle potential. This denes a challenging, but arguably
realistic framework promising to yield unprecedented insight into the mechanisms of Anderson localization.

Texto completo:

PDF

Referências


50 Years of Anderson Localization, E. Abrahams ed.

(World Scienti_c, Singapore, 2010).

D. S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini,

Nature 390, 671 (1997); T. Sperling, W. Buhrer,

C. M. Aegerter, and G. Maret, Nature Photon. 7, 48

(2013).

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature

, 850 (2000).

P. W. Anderson, Phys. Rev. 109,1492 (1958).

J. Chab_e, et al., Phys. Rev. Lett. 101, 255702 (2008).

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht,

P. Lugan, D. Cl_ement, L. Sanchez-Palencia, P. Bouyer

and A. Aspect, Nature 453, 891 (2008).

G. Roati, C. D'Errico, L. Fallani, M. Fattori, C. Fort,

M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio,

Nature 453, 895 (2008).

S. S. Kondov, W. R. McGehee, J. J. Zirbel, B. DeMarco,

Science 334, 66 2011.

T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature

, 52 (2007); Y. Lahini, A. Avidan, F. Pozzi, M. Sorel,

R. Morandotti, D. N. Christodoulides, and Y. Silberberg

Phys. Rev. Lett. 100, 013906 (2008).

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov,

B. A. van Tiggelen, Nat. Phys. 4, 945 (2008).

E. Akkermans and G. Montambaux, Mesoscopic Physics

of Electrons and Photons (Cambridge Univ. Press, 2006).

T. Karpiuk, N. Cherroret, K. L. Lee, B. Gr_emaud,

C. A. Muller, C. Miniatura, Phys. Rev. Lett. 109, 190601

(2012).

T. Micklitz, C. A. Muller, A. Altland, Phys. Rev. Lett.

, 110602 (2014).

N. Cherroret, T. Karpiuk, C. A. Muller, B. Gr_emaud,

and C. Miniatura, Phys. Rev. A 85, 011604(R) (2012).

F. Jendrzejewski, K. Muller, J. Richard, A. Date, T. Plisson,

P. Bouyer, A. Aspect, V. Josse, Phys. Rev. Lett.

, 195302 (2012).

Comparison with the inset in Fig. 1a) suggests an interpretation

of this `coherent backscattering amplitude' as

a weak localization process in pristine form, i.e. without

external classical di_usion attached.

Another way of stating the same fact emphasizes the time

reversal symmetry essential to the coherent backscattering

signal: at time _1 = 2t1, time reversal t ! 2t1 � t

relative to the signal time t1 is restored and the conditions

for phase coherence apply.

B. L. Altshuler, A. G. Aronov, Electron-Electron Interaction

in Disordered Systems (Eds. A. L. Efros, M. Pollak),

pp. 1-153 North-Holland, Amsterdam (1985).

R. P. Feynman and A. R. Hibbs, Quantum Mechanics

and Path Integrals, (New York: McGraw-Hill 1965).

T. Micklitz, C. A. Muller, A. Altland, to be published.

G. Labeyrie, T. Karpiuk, J.-F. Scha_, B. Gr_emaud,

C. Miniatura, D. Delande, Europhys. Lett. 100, 66001

(2012).

N. Cherroret and D. Delande, Phys. Rev. A, 88, 035602

(2013).


Apontamentos

  • Não há apontamentos.