From worldline to quantum superconformal mechanics with/without oscillatorial terms: $D(2,1;\alpha) $ and $sl(2|1)$ models

I. E. Cunha, N. L. Holanda, F. Toppan

Resumo


In this paper we quantize superconformal $\sigma$-models defined by worldline supermultiplets. \par Two types of superconformal mechanics, with and without a DFF term, are considered. \par Without a DFF term (Calogero potential only) the supersymmetry is unbroken. \par The models with a DFF term correspond to deformed (if the Calogero potential is present) or undeformed oscillators. For these (un)deformed oscillators the classical invariant superconformal algebra acts as a spectrum-generating algebra of the quantum theory.\par
Besides the $osp(1|2)$ examples, we explicitly quantize the superconformally-invariant worldine $\sigma$-models defined by the ${\cal N}=4$ $(1,4,3)$ supermultiplet (with $D(2,1;\alpha)$ invariance, for $\alpha\neq 0,1$)   and by the ${\cal N}=2$ $(2,2,0)$ supermultiplet (with two-dimensional target and $sl(2|1)$ invariance). The parameter
$\alpha$ is the scaling dimension of the $(1,4,3)$ supermultiplet and, in the DFF case, has a direct interpretation as a vacuum energy. In the DFF case, for the $sl(2|1)$ models, the scaling dimension $\lambda$ is quantized (either $\lambda=\frac{1}{2}+{\mathbb Z}$ or $\lambda={\mathbb Z}$). The ordinary two-dimensional oscillator is recovered from $\lambda=-\frac{1}{2}$. The spectrum of the theory is decomposed into an infinite set of lowest weight representations of $sl(2|1)$. Surprisingly, extra fermionic raising operators, not belonging to $sl(2|1)$, allow to construct the whole spectrum from a single
(for $\lambda=\frac{1}{2}+{\mathbb Z}$) bosonic vacuum.

Texto completo:

PDF

Referências


N. L. Holanda and F. Toppan, J. Math. Phys. {bf 55} (2014) 061703; arXiv:1402.7298[hep-th].

V. de Alfaro, S. Fubini, and G. Furlan, Nuovo Cimento {bf A 34} (1976) 569.

F. Calogero, J. Math. Phys. {bf 10} (1969) 2191.

S. Fubini and E. Rabinovici, Nucl. Phys. {bf B 245}, (1984) 17.

V. P. Akulov and A. I. Pashnev, Theor. Math. Phys. {bf 56} (1983) 862 [Teor. Mat. Fiz. {bf 56} (1983) 344].

E. Ivanov, S. Krivonos, and V. Leviant, J. Phys. {bf A 22} (1989) 4201.

D. Z. Freedman and P. Mende, Nucl. Phys. {bf B 344} (1990) 317.

P. Claus, M. Derix, R. Kallosh, J. Kumar, P. Townsend, and A. van Proeyen, Phys. Rev. Lett. {bf 81} (1998) 4553; arXiv:hep-th/9804177.

J. A. de Azcarraga, J. M. Izquierdo, J. C. Perez Bueno, and P. K. Townsend, Phys. Rev. {bf D 59} (1999) 084015; arXiv:hep-th/9810230.

N. Wyllard, J. Math. Phys. {bf 41} (2000) 2826; arXiv:hep-th/9910160.

R. Britto-Pacumio, J. Michelson, A. Strominger, and A. Volovich, {em Lectures on superconformal quantum mechanics and

multi-black hole moduli spaces}, in Progress in String Theory and M-Theory, NATO Science Series Vol. {bf 564}, Kluwer Acad.

Press (2001) 235; arXiv:hep-th/9911066.

G. Papadopoulos, Class. Quantum Grav. {bf 17} (2000) 3715; arXiv:hep-th/0002007.

S. Fedoruk, E. Ivanov and O. Lechtenfeld, J. Phys. {bf A 45} (2012) 173001; arXiv:1112.1947[hep-th].

F. Delduc and E. Ivanov, Nucl. Phys. {bf B 770} (2007) 179; arXiv:hep-th/0611247.

S. Bellucci and S. Krivonos, Phys. Rev. {bf D 80} (2009) 065022; arXiv:0905.4633[hep-th].

A. Sen, JHEP {bf 0811} (2008) 075; arXiv:0805.0095[hep-th].

C. Chamon, R. Jackiw, S-Y. Pi and L. Santos, Phys. Lett. {bf B 701} (2011) 503; arXiv:1106.0726[hep-th].

L. Frappat, A. Sciarrino, and P. Sorba, {em Dictionary on Lie Algebras and Superalgebras}, (Academic, London, 2000); arXiv:hep-th/9607161.

E. Ivanov, S. Krivonos, and O. Lechtenfeld, JHEP {bf 0303} (2003) 014; arXiv:hep-th/0212303.

E. Ivanov, S. Krivonos, and O. Lechtenfeld, Class. Quantum Grav. {bf 21} (2004) 1031; arXiv:hep-th/0310299.

E. Ivanov and J. Niederle, Phys. Rev. {bf D 80} (2009) 065027; arXiv:0905.3770[hep-th].

S. Fedoruk, E. Ivanov, and O. Lechtenfeld, JHEP {bf 0908} (2009) 081; arXiv:0905.4951[hep-th].

S. Fedoruk, E. Ivanov, and O. Lechtenfeld, JHEP {bf 1004} (2010) 129; arXiv:0912.3508[hep-th].

S. Krivonos and O. Lechtenfeld, JHEP {bf 1102} (2011) 042; arXiv:1012.4639[hep-th].

Z. Kuznetsova and F. Toppan, J. Math. Phys. {bf 53} (2012) 043513; arXiv:1112.0995[hep-th].

S. Khodaee and F. Toppan, J. Math. Phys. {bf 53} (2012) 103518; arXiv:1208.3612[hep-th].

S. Fedoruk and E. Ivanov, JHEP {bf 1510} (2015) 087; arXiv:1507.08584[hepth].

G. Papadopoulos, Class. Quant. Grav. {bf 30} (2013) 075018; arXiv:1210.1719[hep-th].

A. Pashnev and F. Toppan, J. Math. Phys. {bf 42} (2001) 5257; arXiv:hep-th/0010135.

M. Faux and S. J. Gates Jr., Phys. Rev. {bf D 71} (2005) 065002; arXiv:hep-th/0408004.

Z. Kuznetsova, M. Rojas and F. Toppan, JHEP {bf 0603} (2006) 098; arXiv:hep-th/0511274.

Z. Kuznetsova and F. Toppan, Mod. Phys. Lett. {bf A 23} (2008) 37; arXiv:hep-th/0701225.

D. M. Gitman and I. V. Tyutin, {em Quantization of Fields with Constraints}, Springer Series in Nuclear and Particle Physics (1990).

M. A. Olshanetsky and A. M. Perelomov, Phys. Rept. {bf 94} (1983) 313.

K. Andrzejewski, Annals Phys. {bf 367} (2016) 227; arXiv:1506.05596[hep-th].

B. Basu-Mallick, K. S. Gupta, S. Meljanac and A. Samsarov, Eur. Phys. J. {bf C 49} (2007) 875; arXiv:hep-th/0609111.

S. Krivonos and A. Nersessian, arXiv:1610.02499[hep-th].

N. Aizawa, Z. Kuznetsova, H. Tanaka and F. Toppan, arXiv:1609.08224[math-ph].

E. P. Wigner, Phys. Rev. {bf 77} (1950) 711.

P. G. Castro, B. Chakraborty and F. Toppan, J. Math. Phys. {bf 49} (2008) 082106;

arXiv:0804.2936[hep-th].

V. G. Kac, Commun. Math. Phys. {bf 53} (1977) 31.

W. Nahm, V. Rittenberg, and M. Scheunert, J. Math. Phys. {bf 17} (1976) 1626; {bf 17} (1976) 1640.

A. K. Ganchev and T. D. Palev, J. Math. Phys. {bf 21} (1980) 797.

J. Van de Jeugt, Springer Proc. Math. Stat. {bf 36} (2013) 149.

A. V. Smilga, Phys. Lett. {bf B 585} (2004) 173; arXiv:hep-th/0311023.


Apontamentos

  • Não há apontamentos.