Addendum to "Eliminating the cuspidal temperature profile of a non-equilibrium chain'' [CBPF-NF-011/15]

Michael M. Cândido, Welles A.M. Morgado, Sílvio M. Duarte Queirós

Resumo


This Nota de Física aims to shed further light on the origin of the cuspidal temperature profile of non-equilibrium chains, namely the 1967 Rieder, Liebowitz and Lieb heat conduction model.
Our upgraded analysis shows that the first plateau -- where the cumulants of the heat flux reach their maxima -- is related to the vanishing of the (instantaneous) stationary state two-point velocity correlations for all pairs of elements in the chain, $C_{v}(i,j) \equiv \lim _{t \rightarrow \infty} \left\langle v_i \left(t\right) v_j \left(t\right) \right\rangle =0 $. Such behaviour is equivalent to having a ``phonon box''. For the second plateau, $C_{v}(i,j)$ only vanishes when one of the sites is a edge site; however, the sum of the stationary state two-point velocity correlations over all pairs still equals zero, $\sum _{\left\langle ij\right\rangle} C_{v}(i,j) =0$, as happens whenever the chain is linear.
Bringing the non-linear $\beta$-Fermi-Pasta-Ulam nonequilibrium model into play, we verify that the bulk plateau disappears and that in this situation  $\sum _{\left\langle ij\right\rangle} C_{v}(i,j) \neq 0$.
These results confirm a relation between heat transport in non-equilibrium systems and a spatial propagator that is proxied by $C_{v}(i,j)$.

Texto completo:

PDF

Referências


M.M. Cndido, W.A.M. Morgado and S.M. Duarte Queirs, Notas de Fsica CBPF-NF-011/15(2015)

S. Lepri, R. Livi and A. Politi, Phys. Rep. 377 1 (2003).

A. Dhar, Adv. Phys. 57 457 (2008).

Z. Rieder, J. L. Lebowitz and E. Lieb, J. Math. Phys. 8 1073 (1967).

K. Saito and A. Dhar, Phys. Rev. Lett. 104 040601 (2010).

D. J. R. Mimnagh, Thermal conductivity and dynamics of a chain of free and bound particles

(Ph.D. Dissertation, Simon Fraser University, 1997).

M. Toda, J. Phys. Soc. Japan 22 431 (1967).

G. Casati, J. Ford, F. Vivaldi and W. M. Visscher, Phys. Rev. Lett. 52 1861 (1984).

W. A. M. Morgado and S. M. Duarte Queir´os, Phys. Rev. E 90 022110 (2014).

A. Dhar and J. L. Lebowitz, Phys. Rev. Lett. 100 134301 (2008).

H. Van Beijeren, Phys. Rev. Lett. 108 180601 (2012).

Suman G. Das, A. Dhar, O, Narayan, J. Stat. Phys 154 (2014).

W. A. M. Morgado, S. M. Duarte Queirs and M. M. Cndido (forthcoming).

R. R. vila, E. Pereira and D. L. Teixeira, Physica A 423 51 (2015).

M. S. Mendona and E. Pereira, Physics Lett. A, 379 36 (2015).

E. Fermi, J. Pasta, and S. Ulam, Studies of nonlinear problems (1955). Accessible online at URL: http://www.osti.gov/accomplishments/pdf/A80037041/01.pdf;

G. P. Berman and F. M. Izrailev, Chaos 15, 015104 (2005).

D. Midtvedt, A. Croy, A. Isacsson, Z. Qi, and H. S. Park, Phys. Rev. Lett. 112, 1 (2014).[18] Y. Li, S. Liu, N. Li, P. Hnggi and B. Li, New J. Phys. 17, 043064 (2015)


Apontamentos

  • Não há apontamentos.