Generalized supersymmetry and Lévy-Leblond equation
Resumo
It is shown that the equation has two remarkable symmetries.
One is given by the super Schr\"odinger algebra and the other is by a $\ZZ$ graded Lie algebra.
The $\ZZ$ graded Lie algebra is achieved by transforming bosonic into fermionic operators in the super Schr\"odinger algebra
and introducing second order differential operators as generators of symmetry.
Texto completo:
PDFReferências
N. Aizawa, Z. Kuznetsova, H. Tanaka, F. Toppan, {textit{$ZZ$-graded Lie Symmetries of the L'evy-Leblond Equations}}, preprint CBPF-NF-004/16.
C. P. Boyer, Helv. Phys. Acta, textbf{47} (1974) 589
C. Duval and P. A. Horv'athy, J. Math. Phys. textbf{35} (1994) 2516
W. Fushchych, R. Zhdanov,
textit{Symmetries and Exact Solutions of Nonlinear Dirac Equations}, (Mathematical Ukraina Publisher, 1997)
J. P. Gauntlett, J. Gomis, P. K. Townsend,
Phys. Lett. textbf{B248} (1990) 288
P. A. Horv'athy,
textit{Non-relativistic conformal and supersymmetries},
arXiv:0807.0513 [hep-th]
P. A. Horv'athy, M. S. Plyushchay and M. Valenzuela,
J. Math. Phys. textbf{51} (2010) 092108
P. D. Jarvis, M. Yang and B. G. Wybourne, J. Math. Phys. textbf{28} (1987) 1192
J.-M. L'evy-Leblond, Comm. Math. Phys. textbf{6} (1967) 286
J. Lukierski, V. Rittenberg, Phys. Rev. textbf{D18} (1978) 385
U. Niederer, Helv. Phys. Acta, textbf{47} (1974) 167
V. Rittenberg, D. Wyler, Nucl. Phys. textbf{B139} (1978) 189
V. Rittenberg, D. Wyler, J. Math. Phys. textbf{19} (1978) 2193
M. Scheunert, J. Math. Phys. textbf{20} (1979) 712
V. N. Tolstoy, Phys. Part. Nucl. Lett. textbf{11} (2014) 933
F. Toppan, J. Phys. Conf. Ser. textbf{597} (2015) 012071
M. A. Vasiliev, Class. Quantum Grav. textbf{2} (1985) 645
A. A. Zheltukhin, Teor. Mat. Fiz. textbf{71} (1987) 218
Apontamentos
- Não há apontamentos.