Z2 X Z2-graded Lie Symmetries of the Lévy-Leblond Equations

N. Aizawa, Z. Kuznetsova, H. Tanaka, F. Toppan

Resumo


The first-order differential L\'evy-Leblond equations (LLE's) are the non-relativistic analogs of the Dirac equation, being square roots of ($1+d$)-dimensional Schr\"odinger or heat equations. Just like the Dirac equation, the LLE's possess a natural supersymmetry. In previous works it was shown that non supersymmetric PDE's (notably,  the
Schr\"odinger equations for free particles or in the presence of a harmonic potential), admit a natural ${\mathbb Z}_2$-graded Lie  symmetry.\par
In this paper we show that, for a certain class of supersymmetric PDE's, a natural ${\mathbb Z}_2\times{\mathbb Z}_2$-graded Lie  symmetry appears. In particular, we exhaustively investigate the symmetries of the $(1+1)$-dimensional L\'evy-Leblond Equations, both in the free case and for the harmonic potential. In the free case a ${\mathbb Z}_2\times{\mathbb Z}_2$-graded Lie superalgebra, realized by first and second-order differential symmetry operators, is found. In the presence of a non-vanishing quadratic potential, the Schr\"odinger invariance is maintained, while the ${\mathbb Z}_2$- and ${\mathbb Z}_2\times{\mathbb Z}_2$- graded extensions are no longer allowed. \par
The construction of the ${\mathbb Z}_2\times {\mathbb Z}_2$-graded Lie symmetry of the ($1+2$)-dimensional free heat LLE introduces a new feature, explaining the existence of first-order differential symmetry operators not entering the super Schr\"odinger algebra.

Texto completo:

PDF

Referências


F. Toppan, {em

Symmetries of the Schr"odinger equation and algebra/superalgebra duality},

J. Phys. Conf. Ser. {bf 597} (2015) n.1, 012071; arXiv:1411.7867 [math-ph].

E. P. Wigner, {em Do the Equations of Motion Determine the Quantum Mechanical Commutation Relations?}, Phys. Rev. {bf 77} (1950) 711.

N. Aizawa, Z. Kuznetsova and F. Toppan, {em ${ell}$-oscillators from second-order invariant PDEs of the centrally extended Conformal Galilei Algebras}, J. Math. Phys. {bf 56} (2015) 031701; arXiv:1506.08488 [math-ph].

J. M. L'evy-Leblond, {em Nonrelativistic particles and wave equations}, Comm. Math. Phys.

{bf 6} (1967) 286.

V. Rittenberg and D. Wyler, {em Generalized Superalgebras}, Nucl. Phys. {bf B 139} (1978) 189.

V. Rittenberg and D. Wyler, {em Sequences of $Z_2otimes Z_2$ graded Lie algebras and superalgebras}, J. Math. Phys. {bf 19} (1978) 2193.

J. Lukierski and V. Rittenberg, {em Color-De Sitter and Color-Conformal Superalgebras}, Phys.

Rev. {bf D 18} (1978) 385.

M. Scheunert, {em Generalized Lie algebras}, J. Math. Phys. {bf 20} (1979) 712.

M. A. Vasiliev, {em de Sitter supergravity with positive cosmological constant and generalized Lie superalgebras}, Class. Quantum Grav. {bf 2} (1985) 645.

P. D. Jarvis, M. Yang and B. G. Wybourne, {em Generalized quasispin for supergroups}, J. Math. Phys. {bf 28} (1987) 1192.

A. A. Zheltukhin, {em Para-Grassmann extension of the Neveu-Schwartz-Ramond algebra}, Theor. Math. Phys. {bf 71} (1987) 491 (Teor. Mat. Fiz. {bf 71} (1987) 218).

V. N. Tolstoy, {em Once more on parastatistics}, Phys. Part. Nucl. Lett. {bf{11}} (2014) 933.

D. Piontovski and S. D. Silvestrov, {em Cohomology of $3$-dimensional color Lie algebras},

J. Algebra {bf 316} (2007) 499; arXiv:math/0508573[math.KT].

T. Covolo, {em Cohomological Approach to the Graded Berezinian}, J. Noncommut. Geom.

{bf 9} (2015) 543; arXiv:1207.2962 [math.RA].

W. Fushchych and R. Zhdanov, {em Symmetries and Exact Solutions of Nonlinear Dirac Equations}, Mathematical Ukraina Publisher, Kyiv (1997); arXiv:math-ph/0609052.

J. P. Gauntlett, J. Gomis and P. K. Townsend, {em Supersymmetry and the physical-space-phase formulation of spinning particles},

Phys. Lett. {bf B 248} (1990) 288.

C. Duval and P. A. Horv'athy, {em On Schr"odinger superalgebras}, J. Math. Phys. {bf 35} (1994) 2516; arXiv:hep-th/0508079.

S. Okubo, {em Real Representations of finite Clifford algebras. 1. Classification}, J. Math. Phys.

{bf 32} (1991) 1657.

F. Toppan and P. W. Verbeek, {em

On Alphabetic Presentations of Clifford Algebras and Their Possible Applications}, J. Math. Phys. {bf 50} (2009) 123523; arXiv:0903.0940 [math-ph].

U. Niederer, {em The maximal kinematical invariance groups of Schr"odinger equations with

arbitrary potentials}, Helv. Phys. Acta {bf 47} (1974) 167.

C. P. Boyer, {em The maximal ``kinematical" invariance group for an arbitrary potential}, Helv. Phys. Acta {bf 47} (1974) 589.

N. Aizawa, Z. Kuznetsova, H. Tanaka and F. Toppan, {em Generalized supersymmetry and

L'evy-Leblond equation}, talk at Group 31 - ICGTMP, Rio de Janeiro, Brazil (2016). Preprint CBPF-NF-005/16.

K. McCrimmon, {em A Taste of Jordan Algebras}, Universitext 2004 Springer-Verlag, New York.


Apontamentos

  • Não há apontamentos.