Semiclassical evolution of correlations between observables

Alfredo M. Ozorio de Almeida, Olivier Brodier

Resumo


The trace of an arbitrary product of quantum operators with the density operator is rendered as a multiple phase space integral of the product of their Weyl symbols
with the Wigner function. Interspersing the factors with various evolution operators, one obtains an evolving correlation. The kernel for the matching multiple integral that
evolves within the Weyl representation is identified with the trace of a single compound unitary operator. Its evaluation within a semiclassical approximation then becomes a
sum over the periodic trajectories of the corresponding classical compound canonical transformation. The search for periodic trajectories can be bypassed by an exactly equivalent initial
value scheme, which involves a change of integration variable and a reduced compound unitary operator. Restriction of all the operators to observables with smooth nonoscillatory
Weyl symbols reduces the evolving correlation to a single phase space integral. If each observable undergoes independent Heisenberg evolution, the overall
correlation evolves classically. Otherwise, the kernel acquires a nonclassical phase factor, though it still depends on a purely classical compound trajectory: e.g. the fase
for a double return of the quantum Loschmidt echo does not coincide with twice the phase for a single echo. 

Texto completo:

PDF

Referências


W. H.Miller 1970 J. Chem. Phys. 53 3578.

W.H. Miller W H J. Phys. Chem. 105 2942.

W. H.Miller 2002 Molecular Phys. 100 397-400.

F. Grossmann 1998 Phys. Rev. A 57 3256.

M. F. Hermann and E. Kluk 1984 Chem. Phys. 91 27.

K.G. Kay 1994 J. Chem. Phys. 100 4377; ibid 100 4445.

M. Baranger, M. A. M. Aguiar, F. Keck, H-J Korsch and Schellhass 2001 J. Phys. A 34 7227.

W. H. Miller 2012 J. Chem. Phys. 136 210901.

A. M. Ozorio de Almeida, R. O. Vallejos and E. Zambrano 2013 J. Phys. A 46 135304

A. M. Ozorio de Almeida 1998 Phys. Rep. 295 265.

E. P. Wigner 1932 Phys. Rev. 40 749.

A. Grossmann 1976 Commun. Math. Phys. 48 191.

Royer A 1977 Phys. Rev. A 15 449.

M. Gutzwiller 1990 “Chaos in Classical and Quantum Mechanics” (New York: Springer)

A. M. Ozorio de Almeida 1988 “Hamiltonian Systems: Chaos and Quantization” (Cambridge: Cambridge University Press)

M A. M. de Aguiar, C. P. Malta, M. Baranger and K. T. R. Davies 1987 Ann. Phys. N. Y 180 167

A. M. Ozorio de Almeida and G-L. Ingold 2014 J. Phys. A 47 105303

A. Peres 1993 “Quantum Theory: Concepts and Methods (Berlin: Springer)

V. Bargmann 1961 Comm. Pure Appl. Math. 14 187

P. Kramer, M. Moshinsky and T. H Seligman 1975 in “Group Theory and Applications” ed. E. M Loebl (New York: Academic Press)

V. Guillemin and S. Sternberg 1984 “Symplectic Techniques in Physics” (Cambridge: CUP)

A. Voros 1976 Ann. Inst. H. Poincar´e 24A 31

A. Voros 1977 Ann. Inst. H. Poincar´e 26A 343

R. G. Littlejohn 1986 Phys. Rep. 138 193.

M. de Gosson 2006 “Symplectic Geometry and Quantum Mechanics” (Basel: Birkh¨auser Verlag)

A. J. Leggett and A. Garg 1985 Phys. Rev. Lett. 54 857

T. Gorin, T. Prosen, T. H. Seligman and M. Znidaric 2006 Phys. Rep. 435 33

E. Zambrano, M. ˇ Sulc and J. Van´ıˇcek 2013 J. Chem. Phys. 139 054109

M. V. Berry 1989 Proc. R. Soc. Lond. A 423 219

H. J. Groenewold 1946 Physica 12 405

J. Van´ıˇcek 2004 Phys. Rev. E 70 055201

E. Zambrano and O. A. Ozorio de Almeida 2011 Phys. Rev. E 84 045201

B-G. Englert, N. Sterpi and N. Walther 1993 Opt. Commun. 100 526

L. G. Lutterbach and L. Davidovich 1997 Phys. Rev. Lett. 78, 2547

P. Bertet, A. Auffeves, P. Maioli, S. Ornaghi, T. Meunier, M. Brune, J. M. Raimond and S. Haroche 2002 Phys. Rev. Lett. 89 200402


Apontamentos

  • Não há apontamentos.