Invariant PDEs of Conformal Galilei Algebra as deformations: cryptohermiticity and contractions

N. Aizawa, Z. Kuznetsova, F. Toppan

Resumo


Abstract: In two papers, JPA: Math. Theor. 46, 405204 (2013) and JMP 56, 031701 (2015), second-order invariant PDEs of the $d=1$ $\ell=\frac{1}{2}+{\mathbb N}_0$ centrally extended Conformal Galilei Algebras, were constructed (for continuous and, respectively, discrete spectrum). We investigate here the general class of second-order invariant PDEs, pointing out that they are deformations of decoupled systems. For $\ell=\frac{3}{2}$ the unique
deformation parameter $\gamma$ belongs to the fundamental domain $\gamma\in ]0,+\infty[$. The invariant PDE with discrete spectrum induces a cryptohermitian operator possessing the same spectrum as two decoupled oscillators of given energy $\omega_1, \omega_2$. The normalization $\omega_1=1$ implies, for $\omega_2$, the admissible critical values $\omega_2=\pm\frac{1}{3},\pm 3$ (the negative energy solutions correspond to a special case of Pais-Uhlenbeck oscillator). \par
Unitarily inequivalent operators, acting on the ${\mathcal L}2({\mathbb R}2)$ Hilbert space, are obtained for the deformation parameter $\gamma$ belonging to the fundamental domain. The undeformed $\gamma=0$ case corresponds to a decoupled  cryptohermitian operator with enhanced symmetry at the critical values $\omega_2=\pm \frac{1}{3}, \pm 1,\pm 3$. Two inequivalent $12$-generator symmetry algebras are found at $\omega_2=\pm\frac{1}{3},\pm 3$ and $\omega_2=\pm 1$, respectively. The $\ell=\frac{3}{2}$ Conformal Galilei Algebra is not a subalgebra of the decoupled symmetry algebra. Its $\gamma\rightarrow 0$ contraction corresponds to a $8$-generator subalgebra of the decoupled $\omega_2=\pm\frac{1}{3},\pm 3$ symmetry algebra.\par
The features of the $\ell\geq \frac{5}{2}$ invariant PDEs are briefly discussed. 

Texto completo:

PDF

Referências


N. Aizawa, Y. Kimura, and J. Segar, J. Phys. A: Math. Theor. 46, 405204 (2013).

N. Aizawa, Z. Kuznetsova, and F. Toppan, J. Math. Phys. 56, 031701 (2015).

J. Negro, M. Del Olmo, and A. Rodrguez-Marco, J. Math. Phys. 38, 3786 (1997).

A. Smilga, SIGMA 5, 017 (2009).

A. Pais and G. Uhlenbeck, Phys. Rev. 79, 145 (1950).

S. V. Ketov, G. Michiaki, and T. Yumibayashi, Quantizing with a higher time derivative, in Advances in Quantum Field Theory, edited by S. Ketov, InTech Publishers, p. 49 (2012).

M. Ostrogradski, Mem. Ac. St. Petersbourg VI, 385 (1850).

A. Galajinsky and I. Masterov, Phys. Lett. B 723, 190 (2013).

K. Andrzejewski, A. Galajinsky, J. Gonera, and I. Masterov, Nucl. Phys. B 885, 150 (2014).

K. Andrzejewski, Phys. Lett. B 738, 405 (2014).

K. Andrzejewski, Nucl. Phys. B 889, 333 (2014).

A. Galajinsky and I. Masterov, Nucl. Phys. B 896, 244 (2015).

F. Toppan, J. Phys. Conf. Ser. 597, 012071 (2015).

U. Niederer, Helv. Phys. Acta 45, 802 (1972).

U. Niederer, Helv. Phys. Acta 46, 191 (1973).

U. Niederer, Helv. Phys. Acta 47, 167 (1974).

R. Woodard, arXiv:1506.02210 [hep-th] (2015).


Apontamentos

  • Não há apontamentos.