Invariant PDEs of Conformal Galilei Algebra as deformations: cryptohermiticity and contractions
Resumo
deformation parameter $\gamma$ belongs to the fundamental domain $\gamma\in ]0,+\infty[$. The invariant PDE with discrete spectrum induces a cryptohermitian operator possessing the same spectrum as two decoupled oscillators of given energy $\omega_1, \omega_2$. The normalization $\omega_1=1$ implies, for $\omega_2$, the admissible critical values $\omega_2=\pm\frac{1}{3},\pm 3$ (the negative energy solutions correspond to a special case of Pais-Uhlenbeck oscillator). \par
Unitarily inequivalent operators, acting on the ${\mathcal L}2({\mathbb R}2)$ Hilbert space, are obtained for the deformation parameter $\gamma$ belonging to the fundamental domain. The undeformed $\gamma=0$ case corresponds to a decoupled cryptohermitian operator with enhanced symmetry at the critical values $\omega_2=\pm \frac{1}{3}, \pm 1,\pm 3$. Two inequivalent $12$-generator symmetry algebras are found at $\omega_2=\pm\frac{1}{3},\pm 3$ and $\omega_2=\pm 1$, respectively. The $\ell=\frac{3}{2}$ Conformal Galilei Algebra is not a subalgebra of the decoupled symmetry algebra. Its $\gamma\rightarrow 0$ contraction corresponds to a $8$-generator subalgebra of the decoupled $\omega_2=\pm\frac{1}{3},\pm 3$ symmetry algebra.\par
The features of the $\ell\geq \frac{5}{2}$ invariant PDEs are briefly discussed.
Texto completo:
PDFReferências
N. Aizawa, Y. Kimura, and J. Segar, J. Phys. A: Math. Theor. 46, 405204 (2013).
N. Aizawa, Z. Kuznetsova, and F. Toppan, J. Math. Phys. 56, 031701 (2015).
J. Negro, M. Del Olmo, and A. Rodrguez-Marco, J. Math. Phys. 38, 3786 (1997).
A. Smilga, SIGMA 5, 017 (2009).
A. Pais and G. Uhlenbeck, Phys. Rev. 79, 145 (1950).
S. V. Ketov, G. Michiaki, and T. Yumibayashi, Quantizing with a higher time derivative, in Advances in Quantum Field Theory, edited by S. Ketov, InTech Publishers, p. 49 (2012).
M. Ostrogradski, Mem. Ac. St. Petersbourg VI, 385 (1850).
A. Galajinsky and I. Masterov, Phys. Lett. B 723, 190 (2013).
K. Andrzejewski, A. Galajinsky, J. Gonera, and I. Masterov, Nucl. Phys. B 885, 150 (2014).
K. Andrzejewski, Phys. Lett. B 738, 405 (2014).
K. Andrzejewski, Nucl. Phys. B 889, 333 (2014).
A. Galajinsky and I. Masterov, Nucl. Phys. B 896, 244 (2015).
F. Toppan, J. Phys. Conf. Ser. 597, 012071 (2015).
U. Niederer, Helv. Phys. Acta 45, 802 (1972).
U. Niederer, Helv. Phys. Acta 46, 191 (1973).
U. Niederer, Helv. Phys. Acta 47, 167 (1974).
R. Woodard, arXiv:1506.02210 [hep-th] (2015).
Apontamentos
- Não há apontamentos.