${\ell}$-oscillators from second-order invariant PDEs of the centrally extended Conformal Galilei Algebras

N. Aizawa, Z. Kuznetsova, F. Toppan

Resumo


We construct, for any given ${\ell}=\frac{1}{2}+{\mathbb{N}}_0$, the second-order, linear PDEs which are invariant under the centrally extended Conformal Galilei Algebra. \par At the given ${\ell}$, two invariant equations in one time and ${\ell}+\frac{1}{2}$ space coordinates are obtained.
The first equation possesses a continuum spectrum and generalizes the free Schr\"odinger equation (recovered for ${\ell}=\frac{1}{2}$) in $1+1$ dimension. The second equation (the ``$\ell$-oscillator") possesses a discrete, positive spectrum. It generalizes the $1+1$-dimensional harmonic oscillator (recovered for $\ell=\frac{1}{2}$). The spectrum of the ${\ell}$-oscillator, derived from a specific $osp(1|2\ell+1)$ h.w.r., is explicitly presented.\par
The two sets of invariant PDEs are determined by imposing (representation-dependent) {\it on-shell invariant conditions} both for {\it degree} $1$ operators (those with continuum spectrum) and for {\it degree } $0$ operators
(those with discrete spectrum).
The on-shell condition is better understood by enlarging the Conformal Galilei Algebras with the addition of certain second-order differential operators. Two compatible structures (the algebra/superalgebra duality) are defined for the enlarged set of operators. 

Texto completo:

PDF

Referências


F. Toppan, Symmetries of the Schrodinger equation and algebra/superalgebra duality,

arXiv:1411.7867 [math-ph]. To appear in the Proceedings of the 30th ICGTMP, Ghent

J. Negro, M. A. del Olmo and A. Rodrguez-Marco, J. Math. Phys. 38 (1997) 3786.

N. Aizawa, Y. Kimura and J. Segar, J. Phys. A: Math. Theor. 46 (2013) 405204;

arXiv:1308.0121 [math-ph].

U. Niederer, Helv. Phys.Acta. 46 (1973) 191.

G. Bluman and V. Shtelen, J. Phys. A: Math. Gen. 29 (1996) 4473.

C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243;

arXiv:physics/9712001.

C. M. Bender, S. Boettcher and P. Meisinger, J. Math. Phys. 40 (1999) 2201;

arXiv:quant-ph/9809072.

A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; arXiv:math-ph/0107001; ibid 2814;

arXiv:math-ph/0110016; ibid 3944; arXiv:math-ph/0203005.

J. Gomis and K. Kamimura, Phys. Rev. D 85 (2012) 045023; arXiv:1109.3773 [hepth].

A. Galajinsky and I. Masterov, Phys. Lett. B723 (2013) 190; arXiv:1303.3419 [hepth].

K. Andrzejewski, A. Galajinsky, J. Gonera and I. Masterov, Nucl. Phys. B885 (2014)

; arXiv:1402.1297 [hep-th].

K. Andrzejewski, Phys. Lett. B738 (2014) 405; arXiv:1409.3926 [hep-th].

K. Andrzejewski, Nucl. Phys. B889 (2014) 333; arXiv:1410.0479 [hep-th].

D. Martelli and Y. Tachikawa, JHEP 05 (2010) 091; arXiv:0903.5184 [hep-th].

S. Helgason, Dierential Geometry, Lie Groups and Symmetric Spaces, Academic

Press, 1978.

A. W. Knapp, Representation Theory of Semisimple Groups (An Overview Based on

Examples), Princeton Uni. Press, 1986.

V. K. Dobrev, Rep. Math. Phys. 25 (1988) 159.

U. Niederer, Helv. Phys. Acta 45 (1972) 802.

L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie algebras and superalgebras,

Academic Press, 2000.

CBPF-NF-002/15 17

C. Duval and P. A. Horvathy, J. Math. Phys. 35 (1994) 2516.

M. Sakaguchi and K. Yoshida, J. Math. Phys. 49 (2008) 102302; arXiv:0805.2661

[hep-th].

M. Sakaguchi and K. Yoshida, JHEP 0808 (2008) 049; arXiv:0806.3612 [hep-th].

J. A. de Azcarraga and J. Lukierski, Phys. Lett. B 678 (2009) 411; arXiv:0905.0141

[math-ph].

M. Sakaguchi, J. Math. Phys. 51 (2010) 042301; arXiv:0905.0188 [hep-th].

A. Bagchi and I. Mandal, Phys. Rev. D 80 (2009) 086011; arXiv:0905.0580 [hep-th].

S. Fedoruk and J. Lukierski, Phys. Rev. D 84 (2011) 065002; arXiv:1105.3444

[math-ph].

I. Mandal, JHEP 1011 (2010) 018; arXiv:1003.0209 [hep-th].

I. Masterov, J. Math. Phys. 53 (2012) 072904; arXiv:1112.4924 [hep-th].

N. Aizawa, J. Phys. A 45 (2012) 475203; arXiv:1206.2708 [math-ph].

N. Aizawa, Z. Kuznetsova and F. Toppan, J. Math. Phys. 54 (2013) 093506;

arXiv:1307.5259 [hep-th].

L. V. Ovsiannikov, Group Analysis of Dierential Equations, Academic Press, 1982.

P. J. Olver, Applications of Lie Groups to Dierential Equations, Springer-Verlag,

W. I. Fushchych and R. M. Cherniha, J. Phys. A: Math. Gen. 18 (1985) 3491.

R. M. Cherniha and M. Henkel, J. Math. Anal. Appl. 369 (2010) 120;

arXiv:0910.4822 [math-ph].

W. I. Fushchych and A. G. Nikitin, Symmetries of Equations of Quantum Mechanics,

Allerton Press, 1994.

U. Niederer, Helv. Phys.Acta. 47 (1974) 167.

C. P. Boyer, Helv. Phys.Acta. 47 (1974) 589.

N. L. Holanda and F. Toppan, J. Math. Phys. 55, 061703 (2014); arXiv.org:1402.7298

[hep-th].

C. Fronsdal, Essays on Supersymmetry, Math. Phys. Studies Vol. 8 (1986) 163.

M. A. Vasiliev, Fortsch. der Physik 52 (2004) 702.

V. Rittenberg and D. Wyler, J. Math. Phys. 19 (1978) 2193.

M. Scheunert, J. Math. Phys. 20 (1979) 712.


Apontamentos

  • Não há apontamentos.