Porous medium permeability estimation for well imagery and characterization using complex resistivity spectra
Resumo
Abstract: Formation permeability plays a crucial role in oil/gas industry as it helps geologists understand how the soil was formed and the most likely location of a certain reservoir. It also aids engineers and analysts to know whether that reservoir is exploitable or not. However, these measurements are very costly and difficult to obtain. In the past decades, several methods have appeared for estimating permeability from different sources like NMR data or well-logs. In this work we tested the relationship between complex impedance spectra and permeability measurements, showing that –for the tested porous medium– it does exist a correlation of almost 98% between the obtained complex electrical impedance spectra and the permeability of those mediums. This link could be used in the oil/gas industry adapting the current electrical imaging tools to perform sweep measurements instead of single-frequency measurements, which could be used, in theory, to obtain permeability measurements with spacial resolution. On the other hand, we also designed and implemented an imaging tool that relies on this principle to obtain complex impedance volume images.
Resumo: As medidas de permeabilidade de formaçao são chave no relacionado à caracterizacão de solos. Este parâmetro tem um papel fundamental na indústria de gás e óleo, pois ajuda os geólogos a entender como um certo solo foi formado e a possível e mais provavel localizacão de um certo reservatório; e ajuda os engenheiros e analistas a saber se um certo reservatório é explorável ou não. No entanto, medidas de permeabilidade são muito custosas e difíceis de se obter. Nas ultimas décadas apareceram novos métodos de estimativa da permeabilidade a partir de fontes de dados como NMR ou logs de poços. Neste trabalho testamos a relaçao que medidas de impedância complexa têm com medidas de permeabilidade, provando que –para os meios porosos testados– existe uma correlação de quase 98% entre os espectros de impedância complexa obtidos e a permeabilidade desses meios. Esta relação poderia ser utilizada na indústria de óleo e gás adaptando os sistemas de imageamento elétricos atuais para realizar varreduras de frequência, ao invés de medidas monofrequenciais, as quais poderiam ser posteriormente usadas para criar imagens de permeabilidade estimada. Por outro lado, também realizamos o design e implementação de uma ferramenta de imageamento baseada no princípio de obtenção de imagens de espectros complexos impedancia elétrica.
Palavras-chave
Texto completo:
PDFReferências
Philip Kearey, Michael Brooks, and Ian Hill. An introduction
to geophysical exploration. John Wiley & Sons, 2013.
Rodney Calvert. Insights and methods for 4D reservoir monitoring
and characterization. Society of Exploration Geophysicists
and European Association of Geoscientists and Engineers,
Darwin V Ellis and Julian M Singer. Well logging for earth
scientists, volume 692. Springer, 2007.
Gustave E Archie et al. The electrical resistivity log as an aid
in determining some reservoir characteristics. Transactions of
the AIME, 146(01):54–62, 1942.
Stefan M Luthi. Electrical borehole imaging. In Geological
Well Logs, pages 74–123. Springer, 2001.
Henry Darcy. Les fontaines publiques de la ville de Dijon:
exposition et application... Victor Dalmont, 1856.
API RP40. Recommended practices for core analysis. Feb,
LJ Klinkenberg et al. The permeability of porous media to liquids
and gases. In Drilling and production practice. American
Petroleum Institute, 1941.
Aytekin Timur et al. An investigation of permeability, porosity,
and residual water saturation relationships. In SPWLA
th annual logging symposium. Society of Petrophysicists and
Well-Log Analysts, 1968.
A Kohli and P Arora. Application of artificial neural networks
for well logs. In IPTC 2014: International Petroleum Technology
Conference, 2014.
Shahab Mohaghegh, Reza Arefi, Samuel Ameri, D Rose, et al.
Design and development of an artificial neural network for estimation
of formation permeability. SPE Computer Applications,
(06):151–154, 1995.
Baouche Rafik and Baddari Kamel. Prediction of permeability
and porosity from well log data using the nonparametric regression
with multivariate analysis and neural network, hassi
rmel field, algeria. Egyptian Journal of Petroleum, 2016.
Salaheldin Elkatatny, Mohamed Mahmoud, Zeeshan Tariq,
and Abdulazeez Abdulraheem. New insights into the prediction
of heterogeneous carbonate reservoir permeability from
well logs using artificial intelligence network. Neural Computing
and Applications, pages 1–11, 2017.
Dahai Chang, Harold J Vinegar, Chris Morriss, Chris Straley,
et al. Effective porosity, producible fluid and permeability
in carbonates from nmr logging. In SPWLA 35th Annual
Logging Symposium. Society of Petrophysicists and Well-Log
Analysts, 1994.
Hugh Daigle and Brandon Dugan. Extending nmr data for
permeability estimation in fine-grained sediments. Marine and
Petroleum Geology, 26(8):1419–1427, 2009.
Peter J Tumidajski, AS Schumacher, S Perron, P Gu, and
JJ Beaudoin. On the relationship between porosity and electrical
resistivity in cementitious systems. Cement and concrete
research, 26(4):539–544, 1996.
Jan Henrik Norbisrath. Complex resistivity spectra in relation
to multiscale pore geometry in carbonates and mixedsiliciclastic
rocks. PhD thesis, University of Miami, 2016.
Maosong Tong and Honggen Tao. Permeability estimating
from complex resistivity measurement of shaly sand reservoir.
Geophysical Journal International, 173(2):733–739, 2008.
Jan Henrik Norbisrath. Complex resistivity spectra in relation
to multiscale pore geometry in carbonates and mixedsiliciclastic
rocks. PhD thesis, University of Miami, 2016.
David Huntley. Relations between permeability and electrical
resistivity in granular aquifers. Groundwater, 24(4):466–474,
Leonardo Pereira Marinho. Aplicac¸ao do modelo de dias na ˜
estimativa da permeabilidade hidraulica em amostras de aren- ´
itos, a partir da medida do efeito de polarizac¸ao el ˜ etrica in- ´
duzida, 2005.
Bruno Chencarek, Maury Duarte Correia, Moacyr do Nascimento,
Alexandre M. Souza, and Ivan S. Oliveira. Processo
para produc¸ao e caracterizac¸ ˜ ao de rochas sint ˜ eticas com ´
porosidade controlada para aplicac¸oes em petrof ˜ ´ısica por rmn
de alto e baixo campo. Notas Tecnicas do CBPF ´ , 2017.
Analog Devices. Ad5933 datasheet, 2007.
Philips Semiconductors. The i2c-bus specification. Philips
Semiconductors, 9397(750):00954, 2000.
Javier Ferreira, Fernando Seoane, Antonio Ansede, and Ramon
Bragos. Ad5933-based spectrometer for electrical
bioimpedance applications. In Journal of Physics: Conference
Series, volume 224, page 012011. IOP Publishing, 2010.
C Margo, J Katrib, Mustapha Nadi, and Amar Rouane. A
four-electrode low frequency impedance spectroscopy measurement
system using the ad5933 measurement chip. Physiological
measurement, 34(4):391, 2013.
Eben Upton and Gareth Halfacree. Raspberry Pi user guide.
John Wiley & Sons, 2014.
Texas Instruments. Cd4066b cmos quad bilateral switch,
Fairchild Semiconductor. Dm74ls154 4-line to 16-line decoder/demultiplexer.
Retrieved April, 20:2004, 2000.