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Using Deep Learning Transformer Networks to Identify Symptoms Associated with COVID-19 on
Twitter
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Vı́tor Machado 1,∗ Clécio R. Bom 1,† Kary Ocaña 2,‡ Rafael Terra 2,§ e Miriam B. F. Chaves2¶
1 Brazilian Center for Physical Research (CBPF/MCTI)

Dr. Xavier Sigaud Street, 150, Ed. César Lattes,
Urca, Rio de Janeiro, RJ. CEP: 22290-180, Brazil e

2 National Laboratory for Scientific Computing (LNCC/MCTI)
Getulio Vargas Avenue, 333,
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Abstract: This study aims to present a methodology to identify, through Twitter posts, predefined symptoms
of COVID-19 aided by Deep Learning techniques, namely Transformers Networks. The proposed approach
was evaluated on a public Twitter database in Brazilian Portuguese, using user reports of COVID-19 symptoms.
We mine the Twitter database, extract phrases with symptoms, compare distributions, and build a database to
construct high accuracy Deep Learning networks, which can be used to identify symptoms. We use a cross-
validation procedure to evaluate the result’s performance. Additionally, we interpret the results using a Local
Interpretable Model-Agnostic Explanations (LIME) algorithm. We identified 907 tweets containing one or more
of the 14 previously chosen COVID-19 symptoms. The most frequently reported symptoms were a cough (392),
headache (154), runny nose (143), fever (124), nausea (106), and diarrhea (105) amongst users who reported at
least one symptom. The BERT architecture identified all 14 symptoms reported in Twitter phrases in Portuguese,
resulting in identifying each symptom with over 97% accuracy and over 0.95 of AUC-ROC at the test dataset.
This project is a step towards a complementary tool to identify symptoms in future automated clinical settings,
e.g., medical chatbots, to support faster clinical assessment in Portuguese.
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Resumo: O presente estudo objetiva apresentar uma metodologia para identificar, em publicações no Twitter,
sintomas predefinidos de COVID-19 através de técnicas de Aprendizado Profundo, mais especificamente, re-
des Transformers. A abordagem proposta foi avaliada em uma base de dados de tweets públicos em português
brasileiro usando relatos de sintomas de COVID-19 feitos pelos usuários. Mineramos a base de dados do Twit-
ter para extrair frases com sintomas, comparamos distribuições e montamos uma base de dados para construir
redes de Aprendizagem Profunda com alta acurácia que podem ser usadas para identificar a presença de sin-
tomas. Usamos um processo de Validação Cruzada para avaliar a performance dos resultados. Adicionalmente,
interpretamos os resultados usando o algoritmo de Local Interpretable Model-Agnostic Explanations (LIME).
Identificamos 907 tweets contendo ao menos um dos 14 sintomas predefinidos de COVID-19. Entre os usuários
que reportaram algum sintoma, os sintomas reportados mais frequentemente foram tosse (392), dor de cabeça
(154), coriza (143), febre (124), enjoo (106) e diarréia (105). A arquitetura BERT identificou todos os 14 sin-
tomas reportados em frases do Twitter em português, identificando cada sintomas com mais de 97% de acurácia
e mais de 0.95 de AUC-ROC nos dados de teste. Este projeto é um passo no caminho do desenvolvimento
de uma futura ferramenta clı́nica automatizada auxiliar para identificar sintomas, e.g., chatbots médicos, para
auxiliar avaliações clı́nicas mais céleres em português.
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1. INTRODUCTION

The Coronavirus pandemic disease (COVID-19) has
caused millions of infections and deaths worldwide1. The
COVID-19 infection has a long hospitalization time, from 10

1 https://www.who.int/publications/m/item/
weekly-operational-update-on-covid-19---8-november-2021
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to 13 days 2, and due to its transmission through the air, hos-
pitals became potential risk spots of new infections. Despite
that, many people looked for hospitals when they thought
they were infected, consequently exposing themselves to the
COVID-19 virus in hospitals.

Providing diagnosis or specific health information directly
to patients using chatbots is a way to reduce the exposure
of people in hospitals and reduce crowds and contact with
COVID-19 infected people, improving health professionals’
quality of work and worktime [1, 2]. In addition, using a
chatbot to collect the anamnesis information raises a new
possibility for health professionals to process data informa-
tion before direct contact with patients.

Early studies focused on identifying the symptoms experi-
enced by patients infected by the virus, mainly those hospi-
talized or who received clinical care [3]. However, many in-
fected people only experience mild symptoms or are asymp-
tomatic and do not seek clinical care, although the specific
portion of asymptomatic carriers is unknown [4, 5].

Transformer Network [6, 7] approaches are used in sev-
eral applications for speech and text, such as text classifica-
tion [8], translation [7], and text summarization [9]. Further-
more, several studies adapting Deep Learning for analyzing
COVID-19 reports have been reported in [10–12].

As a result, we explored the use of social media, specif-
ically Twitter, to study symptoms reported by people test-
ing positive for COVID-19 or even those with symptoms but
without a test result.

Our primary goals were to (i) verify that users report their
experiences with COVID-19, including their positive test re-
sults and symptoms, and (ii) compare the distribution of self-
reported symptoms with those reported in studies conducted
in clinical settings in Brazilian Twitter COVID-19 reports,
developing a deep learning network able to identify COVID-
19’s symptoms in text. Our secondary objectives were to (i)
create a COVID-19 symptom database that captures tweets
in which users express symptoms, developing a systematic
workflow for automated symptom detection and processing,
and (ii) collect a cohort of COVID-19-positive Twitter users’
self-reported Portuguese information in the Brazilian media.

The remainder of this article is organized as follows. Sec-
tion 2 presents some related works. Section 3 presents a
background with popular solutions provided by Deep Learn-
ing for Natural Language Processing. Section 4 presents the
COVID-19 Database construction. Section 5 introduces Ma-
chine Learning (ML) models used to analyze the COVID-19
database. Section 6 describes our results and and analyses.
Finally, section 7 provides some concluding remarks and our
perspectives for future works.

2. RELATED WORK

Sarker et al., 2021 [13], analyze the spectrum of COVID-
19 symptoms self-reported by users from Twitter, aiming to

2 https://www.cdc.gov/coronavirus/2019-ncov/hcp/
clinical-guidance-management-patients.html

complement symptoms identified in clinical settings. This
work was the first study that focused on extracting COVID-
19 symptoms from public social media to the best of our
knowledge. This article assists the research community, and
it is part of a more extensive, maintained data resource — a
social media COVID-19 Data Bundle3.

Kumar et al., 2021 [14], describe approaches for classify-
ing tweets containing COVID-19 symptoms in three classes
(self-reports, non-personal reports & literature/news men-
tions) in the Social Media Mining for Health Applications
(SMM4H) shared tasks in 2021. BERT and XLNet were im-
plemented for this text classification task. The best result was
achieved by the XLNet approach with an F1 score of 0.94,
a precision of 0.9448, and recall of 0.94448. Their results
are slightly better than the average score, i.e., an F1 score of
0.93, a precision of 0.93235, and recall of 0.93235, suggest-
ing that this problem has several high-performing solutions.

According to [15], most internet users would be receptive
to using health chatbots, although hesitancy regarding this
technology likely compromises engagement. In addition, pa-
tients’ perspectives, motivation, and capabilities need to be
taken into account and listened to when developing health
chatbots to improve their use frequency and quality.

Valdes et al., 2021 [16], describe an automatic classifica-
tion of Twitter posts related to COVID-19. It was oriented
towards solving a binary classification problem, identifying
self-reporting tweets of potential cases of COVID-19, and
classifying tweets containing COVID-19 symptoms using
models based on bidirectional encoder representations from
Transformers (BERT). Based on the results obtained, the au-
thors concluded that a model trained with quality domain-
specific data (CT-BERT) could outperform a model trained
with a much more significant amount of general (general
purpose/non-specific) domain data (BERT).

In [17], Luo et al. describe a system that aims to au-
tomatically distinguish English tweets that self-report po-
tential cases of COVID-19 from those that do not. It pro-
posed a model ensemble that leverages pre-trained represen-
tations from COVID-Twitter-BERT, RoBERTa, and Twitter-
RoBERTa. The model obtained F1 scores of 76% on the test
set in the evaluation phase and 77.5% in the post-evaluation
phase.

The study in [18] aimed to detect and characterize
user-generated conversations that could be associated with
COVID-19-related symptoms, as well as experiences with
access to testing, and mentions of disease recovery using an
unsupervised machine learning approach.

Overall, in the present study, we used Transformer Net-
works in a supervised machine learning framework to char-
acterize self-reporting symptoms and mentions of recov-
ery related to COVID-19 from Brazilian Portuguese Twit-
ter social media. Many users reported symptoms related to
COVID-19, but they could not get tested to confirm their con-
cerns. Future studies should continue to explore the utility
of infoveillance approaches to estimate COVID-19 disease
severity, extending research to more text and audio databases

3 (https://sarkerlab.org/covid_sm_data_bundle/)
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and more refined ML models.

3. METHODOLOGY

3.1. Deep Learning

Deep learning (DL) is a subfield of Machine Learning
with algorithms inspired by the brain’s structure and pattern
recognition. It uses many stacks of “neurons” with linear and
non-linear transformations to process information. The word
“deep” in “deep learning” is due to the high depth that the
networks can achieve [19].

DL techniques are a valuable tool for natural language
processing (NLP). In particular, recurrent neural networks
(RNN) were the most successful approach until a few years
ago, reaching over 95% accuracy in classification datasets
such as 20News e Fudan, though they performed with less
than 50% in other datasets such as ACL and SST [20].

The main characteristic of RNNs is that they pass informa-
tion about their current state on to the following calculation
at each step. This way, information about the previous steps
can be used for output predictions. Despite that, this sequen-
tial flow of information creates a bottleneck for speeding up
the calculations, since dependence on previous steps makes
parallelization hard [19].

In the current state of the art, other NLP tasks based on
DL techniques include translation [7, 21], text summariza-
tion [9], and sentence similarity [22].

3.2. Transformers

The Transformer framework is a DL method introduced in
2017 for NLP tasks. It appeared as a state of the art technique
for translation task on WMT 2014 English-to-German (EN-
DE) and English-to-French (EN-FR), with BLEU scores of
28.4 (EN-DE) and 41.8 (EN-FR). The main idea behind
Transformers is the use of a learnable attention mechanism
to choose which parts of the sentence are more relevant for
the meaning of each word [7].

A sentence needs to be tokenized before being processed
by the attention mechanism. In other words, the sentence is
split into words or sub-words, and each word (or sub-word)
is substituted by a corresponding token (a number). Each
of these tokens has a different embedding representation, a
numerical vector of some fixed dimension to represent the
token.

The Transformer’s attention process happens in the so-
called multi-head attention layer, formed by several self-
attention sublayers. The objective of this layer is to trans-
form each embedding representation into a new embedding
that is a linear combination of all the sentence’s embeddings.

In each self-attention layer, also called a head, the input
embeddings are multiplied by three matrices with learnable
weights named WQ, WK , and WV , resulting in three vectors qi,
ki, and vi, respectively, for each input token. These vectors
are known as the queries, the keys, and the values, respec-
tively. For example, the attention mechanism for Token1 in-
volves multiplying q1, the query vector of Token1, by each

of the ki vectors, the key vectors of each token, resulting in
a score for each token. These scores are regularized, divided
by 8 in our example, and fed to a softmax function, resulting
in a number between 0 and 1 for each of them. Then, each
of these numbers is multiplied by its token value vector vi.
The sum of these weighted value vectors is the z1 vector, the
output of Token1. Then, the z1 vectors of each head are con-
catenated together and multiplied by WO, giving the output
of Token1, a new embedding for it. The calculations inside
one self-attention layer can be visualized in Figure 1. The
idea behind this process is simple: the closer the key and the
query representations are, the higher the score and the more
attention is paid to it.

Particularly, Transformers are recommended for our task
since this method uses attention mechanisms on the context
of the whole sentence and has achieved state-of-the-art re-
sults in text classification tasks [23, 24].
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Figure 1: Left: example of how to calculate the forward of the first
token in a self-attention layer. Right: scheme showing the origin of
the q j, k j and v j vectors.

3.3. BERT

BERT is a Transformer network pre-trained using the
BooksCorpus and English Wikipedia [6]. BERT-based mod-
els have been achieving state of the art results in multiple
classification tasks [8, 25, 26].

BERT is an encoder network, meaning it is based on sev-
eral stacks of encoder layers. Each encoder used comprises a
multi-head attention layer, as described in the previous sec-
tion, and a Position-Wise Feed Forward Network (PWFFN).
Skip connections, dropouts (with p=0.1), and layer normal-
ization in the encoder are standard practices for training deep
neural networks more effectively.

The PWFFN is a dense network that processes each em-
bedding independently instead of processing the sequence of
embeddings as a vector. It comprises a Dense (Linear) sub-
layer with an output dimensionality of 3072 and another with
an output dimensionality of 768. The stack of encoders is
called the body of the model. BERT-Base, the body of the
model used in the present work, comprises 12 Encoder lay-
ers, summing up to 110 million parameters. A BERT-Base
network is shown in Figure 2.
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After all the encoder layers, the network ends with a dense
layer with output dimensionality of 768 and tanh as the acti-
vation function, a dropout layer of probability of 0.1, and a
final dense layer with output dimensionality of 14 (i.e., the
number of symptoms to be identified in our case of study).
This is called the head of the model.

BERTimbau is a BERT model body pre-trained on brWaC
(Brazilian Web as Corpus), the most extensive open Brazil-
ian Portuguese corpus when BERTimbau was released [27].
It reached state-of-the-art results in the ASSIN2 dataset, with
0.52 in Pearson’s correlation for Sentence Textual Similarity
and an F1-score of 90.0 for Recognizing Textual Entailment.
It also reached state-of-the-art results in the MiniHAREM
dataset with an F1-score of 83.7 (5 classes) and 78.5 (10
classes) for Named Entity Recognition. The previous state-
of-the-art for all these datasets was BERT Multilingual; a
BERT model pre-trained on 104 languages with the largest
Wikipedia, including Portuguese. These results suggest that
a BERT network trained exclusively in Portuguese can out-
perform a multilingual BERT.

Other models tested on our dataset include BERT Base
Uncased, BERT Multilingual, and GPT-2. However, they
were all overcome by BERTimbau’s results, including ac-
curacy, precision, and AUC-ROC, motivating the use of
BERTimbau in the dataset described in section 4.

3.4. Cross Validation

Before the cross validation framework, the data was shuf-
fled and split into two groups: training and testing (20% of
the data).

The cross validation framework is commonly used among
data scientists due to the stability of results and the precision
for error evaluation. It was performed with 5 (five) folds on
the training group. In other words, the training group was
shuffled and split among 5 (five) groups and were created 5
(five) independent models with the same architecture and ini-
tial weights. Each model used a different set for validation,
using all the other ones for training, as shown in Figure 3.

Finally, all the 5 (five) different trained models evaluated
the testing group, since it is a set of data never processed by
the networks trained. It was used with the median and the
interval between 15.87% and 84.13% percentiles to evaluate
all the metrics in the test dataset, as described in section 6.

3.5. Local Interpretable Model-Agnostic Explanations
(LIME)

The Local Interpretable Model-Agnostic Explanations
(LIME) framework was used as a strategy for interpreting
individual decisions of the model instead of trying to find a
global reasoning for the model. LIME does that by running
the model several times, showing different parts of the same
sentence in the text data. Thereat, LIME can identify the
most important words used by the model for classification
and returns an estimation of the faithfulness about explana-
tions of each sentence [28].

LIME supports finding biases in the classification based on
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Figure 2: BERT for a classification task with 14 classes. The num-
bers after each layer are the shape of the output of the layer.

marked words and the calculated faithfulness, which allows
improvements in the model adequacy to the precise informa-
tion of the text (in our case, the COVID symptom Tweets).
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Figure 3: Cross-validation scheme.

4. COVID-19 DATABASE CONSTRUCTION

In this project, we perform data analysis and topic model-
ing on the tweets about COVID-19 in Brazil from 1 Febru-
ary 2021 to 31 April 2021. A scientific workflow was mod-
eled for extracting and processing tweets to be analyzed with
deep learning. It aims to provide a comprehensive COVID-
19 Twitter data set containing all tweets of high quality.

The workflow is formed by 8 (eight) main activities, with
each activity representing an algorithm, software, or data
analysis (Figure 4). Activities 1 and 2 are performed for data
acquisition by choosing COVID symptoms and keywords.
Activity 3 executes TweetSearcher for extracting COVID
data information from Twitter based on the COVID symp-
toms and keywords from previous activities. Activities 4, 6,
and 8 validate results by analytic data specialists. Activities
5 and 7 execute AI tools using deep learning, NLP, or neural
networks consuming results from activities 4 and 6. Finally,
activity 8 validates results and generates a final Dataset in
CSV format.

The workflow execution is conducted by human-machine
interaction between data analytic, health, and deep learning
specialists. Also, the workflow can be repeatedly executed
until it reaches a consensus data quality. More details about
activities are presented in the next sections.

4.1. Data Selection: COVID-19 Keywords and Symptoms

The set of keywords related to the coronavirus is formed
by: covid, corona, c19, including equivalents hashtag (e.g.,
#covid19). As those keywords retrieved vast numbers of
tweets using TweetSearcher, a filter was included to keep
tweets containing at least one of the chosen symptoms. In
addition, a second filter was included to remove retweets and
images.

The set of chosen symptoms are presented in Portuguese

Twitter
database

Choose keywords
from symptoms

Choose COVID
symptoms

tweets_searcher:
Tweets by keywords 

1st Data Analysis:
Verify symptoms

Dataset 1: Tweets
with symptoms

1st Machine Learning
Analysis: Dataset 1

Quality

3rd Data Analysis:
Add symptoms'

phrases for balancing

Final Dataset 3 with
balanced number of

symptoms 

2nd Data Analysis:
Clean/Enlarge

Dataset 1

Dataset 2:
Train/Test

2nd Machine
Learning Analysis:
Balance Dataset 2 

1 2

3 4 5

6 7

8

Figure 4: Workflow conceptual view for the database construction.

in Table I. They are: calafrio (chill), congestão nasal (nasal
congestion), coriza (runny nose), diarreia (diarrhea), dor de
cabeça (headache), dor muscular (muscle pain), dor de gar-
ganta (sore throat), febre (fever), mal estar (feeling sick),
perda de olfato (loss of smell), perda de paladar (loss of
taste), sonolência (drowsiness), tosse (cough), enjoo (nau-
sea), cansanço (tiredness).

4.2. Twitter Acquisition: TweetSearcher

The third activity executes TweetSearcher to extract tweets
from Twitter posts, which are stored in our local COVID
database. TweetSearcher is a Python script that communi-
cates with the Twitter API through the Tweepy library4. The
script performs a cross-search between symptoms and key-
words related to COVID-19, as shown in Figure 5. The
Twitter API can filter no related words using blocklists and
even advanced query parameters. We filtered retweets and
tweets with images. Finally, the script creates a file using the
JavaScript Object Notation Lines (JSONL) format to store
the obtained tweets in a Comma Separated Values (CSV) for-
mat. TweetSearcher is available in the GitHub repository 5.

4.3. First Data Analysis: Verifying COVID-19 Symptoms

At least three data analysts manually reviewed tweets to
identify the true self-reports. Multiple filter layers (Activities

4 (https://www.tweepy.org/)
5 https://github.com/rafaelstjf/tweets_searcher
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Symptoms in English Symptoms in Portuguese No. of Symptoms in Dataset 1 No. of Symptoms in Dataset 3
cough tosse 366 392
nausea enjoo 59 106

runny nose coriza 57 143
headache dor de cabeça 56 154
diarrhea diarreia 35 105

muscle pain dor muscular 27 116
fever febre 26 124

loss of taste perda de paladar 18 105
tiredness cansaço 17 116

sore throat dor de garganta 15 136
chill calafrio 13 102

loss of smell perda de olfato 13 114
nasal congestion congestão nasal 8 139

drowsiness sonolência 7 101
feeling sick mal estar 1 -

Total 735 (in 556 tweets) 1953 (in 907 tweets)

Table I: Number of symptoms presented in the Dataset 1 (Initial) and Dataset 3 (Final).

Figure 5: TweetSearcher Interface

4, 6, and 8) gave us a tractable set of potential COVID-19-
positive symptoms (a few hundred) reported by users.

Activity 4 verifies the presence of COVID-19 symptoms
in tweets. We further removed users from our COVID-19
database if:

1. Their tweet reports were considered to be fake;

2. Were retweeted from other users;

3. Users affirm that their tests are negative despite their
initial beliefs based on symptoms that led to the belief
about contracting the virus.

For instance, tweets such as COVID-19: Brasil chega
a 25,4 milhões de vacinados (COVID-19: Brazil reaches
25.4 million vaccinated) are discarded due to the fact that
COVID-19 symptoms are not in tweet posts.

Finally, to discover users who self-reported positive
COVID-19 tests, we categorized tweets in four sets based
on the presence of COVID-19 symptoms:

1. Tweets with no symptoms;

2. Tweets with symptoms and a confirmed positive test
(this is our COVID-19-positive set);

3. Tweets with symptoms and a confirmed negative test;

4. Tweets with symptoms and no test.

4.4. Second Data Analysis: Verifying Symptoms in Tweets

Activity 6 identifies and excludes tweets (produced by ML
in Activity 5) that present unusual or meandering words de-
rived from symptoms. For instance, the use of the Portuguese
word sonoridade, which means sonority, was excluded since
it has no relationship with the COVID symptom sonolência
(drowsiness). Note that both words sono-ridade and sono-
lência have the same root, with different meanings. How-
ever, not all the words with this problem were removed, as
the results’ analysis will clarify.

4.5. Second Data Analysis: Balancing Frequency of
Symptoms in Tweets

During activity 8, more tweets, and consequently more
symptoms, were added from Twitter until the frequency dis-
tribution of each symptom in the database was established.
Finally, our initial Dataset (1) is comprised of 556 tweets
containing 735 symptoms, which was increased in the final
Dataset (3) composed of 907 tweets containing 1.953 symp-
toms, as presented in Table II.

Since there was only one example of the symptom feel-
ing sick, it was excluded from our analyses. Activities 6 and
8 were repeatedly executed until the frequency of all symp-
toms was balanced, and ML analyses were executed with ac-
curacy.
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Dataset 1 Dataset 3
Tweets with symptoms 556 907

Tweets without symptoms 3419 3414
Total 3975 4321

Table II: Comparison between the data distributions of the initial
and the final datasets.

5. MACHINE LEARNING PROCESS TO ANALYZE THE
COVID-19 DATABASE

The BERT network was used to identify symptoms in sen-
tences from the Dataset (3) obtained from the previous sec-
tion. Figure 6 presents a schematic describing the steps to
execute the BERT network. The steps are described as fol-
lows.

Activity 1 aims to clean data using regular expressions
(RegEx). Sentences collected by Twitter’s API must be pro-
cessed to clean and extract useful information. For instance,
links, usernames (starting with “@”), emojis, hashtags, and
“RT ” were removed due to the fact that this type of text is
not expected to appear in real-life anamnesis sentences. Ab-
breviations such as “vc” instead of “você” were not removed
due to the transformer networks’ ability to process those fea-
tures, maintaining a grammatical coherence. Misspelling is
present, but it was not removed as it appears in authentic
contexts.

During activity 2, BERTimbau’s tokenizer was used to to-
kenize each sentence. This process separates each word in
the sentence and checks its presence in the dictionary of the
tokenizer. If the word is contained in the dictionary, it is sub-
stituted by a corresponding token (a number). Otherwise, the
word is split into sub-words, which are substituted by their
corresponding tokens. There are also special tokens to indi-
cate the beginning and the end of tweets. The final list of to-
kens must have 120 tokens. If it doesn’t, the list is completed
with zero tokens until a list with 120 tokens represents each
sentence. In other words, the list is padded to 120 tokens.
Although BERT can handle up to 512 tokens per data, we
limited it to 120 tokens due to the memory size of our GPUs.
Other than that, as tweets have 280 characters as a limit, the
120 tokens used are enough to represent all the tweets.

Activity 3 is represented by Token Embedding and Posi-
tional Embedding. Embedding is the process of representing
some information using a vector. If the information is a to-
ken, it is called Token Embedding (TE); if it is a position, it
is called Positional Embedding (PE). Each token has a dif-
ferent embedding representation, provided by BERTimbau,
i.e., each token is mapped to a pre-trained vector of 512 di-
mensions to represent the “meaning” of the token. The TE
is added to a PE to indicate the position of each token on
the tweet. PE represents the information about the position
of each token, allowing BERT to differentiate the distance
between tokens in the sentence.

After the Embedding process, the data is split by Cross
Validation and fed into the BERT network (activity 4). The
output is a vector with the dimensionality of the number of
symptoms. Results are processed by a sigmoid function (ac-
tivity 5), returning a number between 0 and 1, which can be
interpreted as the probability of the presence of one specific

Sentence

Regular
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Tokenization

Token
Embedding

Positional
Embedding

Probabilities

Sigmoid
Function

Add

Cross
Validation

BERT 
Network

Symptoms
identified

1

2

3

4

5

6

Figure 6: Diagram describing the steps every sentence of the dataset
3 was submitted to to identify symptoms.

symptom in a sentence (activity 6). It is necessary to choose
a minimum probability to consider the symptom present; that
is called the threshold. The threshold chosen was probability
>= 0.5. Finally, the process generates a list of symptoms
identified in each sentence.

6. RESULTS AND ANALYZES

6.1. Model Training

The model training converges, since the training and vali-
dation losses decrease to a plateau, as presented in Figure 7.
The median of the validation loss across the folds was used
to select the best epoch to use on the test dataset.

6.2. Model performance

All the described results were evaluated in the test dataset
generated by the cross validation framework applied on
dataset (3), as described in Section 4. The network reaches
high AUC-ROC and precision across all the symptoms in the
test dataset, as observed in Figure 8. These results indicate
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Figure 7: Final training and validation losses for BERTimbau
model.

AUC-ROC Precision
Chill 0.99388 ± 0.00304 0.944 ± 0.010
Nasal congestion 0.99755 ± 0.00084 0.927 ± 0.007
Runny nose 0.99992 ± 0.00003 0.950 ± 0.005
Diarrhea 0.99924 ± 0.00065 0.905 ± .008
Headache 0.99871 ± 0.00040 0.910 ± 0.014
Muscle pain 0.99989 ± 0.00003 0.964 ± 0.024
Sore throat 0.99710 ± 0.00029 0.862 ± 0.011
Fever 0.99781 ± 0.00049 0.969 ± 0.001
Loss of smell 0.99791 ± 0.00032 0.842 ± 0.020
Loss of taste 0.99982 ± 0.00003 0.882 ± 0.030
Drowsiness 0.95886 ± 0.00019 0.947 ± 0.010
Cough 0.99821 ± 0.00012 0.951 ± 0.002
Nausea 0.99916 ± 0.00034 0.913 ± 0.007
Tiredness 0.99988 ± 0.00017 0.960 ± 0.001

Table III: Median and standard deviation of AUC-ROC and Pre-
cision by symptom. All the metrics were measured for the test
dataset.

that the model is highly efficient in differentiating the pres-
ence of symptoms in tweets and generates few false posi-
tives. Furthermore, Table III shows that the results across
the folds of the cross validation are highly stable for all the
symptoms.

Since some symptoms can be reported by patients using
several different synonyms, slightly lower values of preci-
sion or accuracy of results are expected, e.g., nasal conges-
tion, headache, or sore throat. The network learned the most
common ways of describing it, but a few rare examples were
not generalized, leading to a slightly lower precision. The
main problem refers to patients using different words to ex-
press their feelings. These differences can be regional or
even dependant on age, reinforcing the necessity to collect
the most complete and diverse dataset possible for training.

A different problem happened with loss of smell and loss
of taste: very few sentences had one of these symptoms with-
out the presence of the other one. The network created a cor-
relation between the symptoms, leading to a decrease in both
precisions.

The symptom drowsiness had the lowest AUC-ROC, prob-
ably due to the presence in the dataset of words that are
similarly written but have very different meanings, such as
sonoro (sonorous) and sonolência (drowsiness). As its preci-

sion can show us, the network was able to identify the actual
cases of drowsiness, but the AUC-ROC indicates that the as-
surance of the final result could still be higher. Although that
problem could be minimized by creating a more specialized
dictionary for the task, the problem probably exists because
the dataset used for training is quite different from the con-
text of the imagined application. In fact, in an anamnesis
context, the presence of words that are so different to the
medical context isn’t expected.

Likewise, the emergence of similar words with different
meanings should be expected in the context of audio record-
ings of human language. Furthermore, similar-sounding
words will likely confuse a network attempting to identify
them. Our research group is currently developing an audio
anamnesis network in Portuguese and tackling these chal-
lenges.

6.3. LIME results

Using LIME to analyze wrong predictions can be a source
of future improvement, as observed in Figure 9. The exam-
ples presented in the figure suggest that the model has biases
inherited from the data. In (a), despite the presence of the
word entupido, which LIME tags as highly important, the
model fails to return the presence of the symptom congestão
nasal. That is probably a consequence of a lack of more ex-
amples connecting that word and symptom in our dataset.

In (b), the problem is different since the model was not
trained with many sentences that described the absence of
symptoms. Therefore, all the words describing symptoms
are used to indicate the presence of the condition, ignoring
situations that indicate its absence. Considering the objective
of this network, it is a fundamental limitation. A possible
way to minimize such a problem in a real-life application
would be an alert for the users never to describe a symptom
they are not experiencing, restricting themselves to the ones
they could identify.

In (c), we have a correlation problem because the
model uses a description of “losso f taste” to indicate
“losso f smell”. A look in the dataset is beneficial to iden-
tify that, in almost all the cases, these two symptoms emerge
together, confusing the model when it has to analyze a solo
case.

LIME provides a tool to understand how a network identi-
fies symptoms and pinpoints situations where the network
lacks training data. A prediction model can fail in cases
under-represented in the training data. LIME gave two main
insights using only these three examples and others similar
to these. Firstly, the necessity of more data so the model can
generalize its ability to identify symptoms. More examples
of alternative ways of describing the same symptoms and
new sentences that describe loss of taste or loss of smell sep-
arately would be necessary to do so, as indicated by Figure 9
(a) and (c). Secondly, it is essential to ensure that the model
is not used with a negative description of a symptom. De-
spite this limitation, the network helps track patients at risk
for COVID-19 since it involves false positives rather than
false negatives.
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Figure 8: Final ROC and Precision-Recall curves for each symptom of the BERTimbau model.

7. DISCUSSION AND FINAL REMARKS

This work demonstrates the possibility of using artificial
intelligence to identify symptoms in Portuguese texts and the
high-quality results of using modern Natural Language Pro-
cessing techniques, such as Transformer Networks. How-
ever, it also points out that a more diverse dataset would be
necessary to develop a more accurate model that can account
for a broader range of COVID-19 symptoms.

Several challenges at processing real biological or clini-
cal databases must be adapted in computational experiments
using ML-based techniques. For example, data analysts and
medical specialists can treat data to diminish noise and reg-
ularize the symptoms’ distribution. However, a systematic
error can be introduced by this method. Therefore, a large-

scale experiment, including more complex and automatically
processed data in a different time cohort, is needed to further
develop the methodology.

To the best of our knowledge, this is the first study to
have utilized Twitter to curate COVID-19’s symptoms in
Portuguese posted by users analyzed by Transformer tech-
niques. Future studies can be done to analyze the generaliza-
tion ability of the proposed method in a dataset containing
reports from patients in clinical settings.
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Figure 9: (a): false negative case; (b): false positive case; (c): false
positive case.
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