Four types of (super)conformal mechanics: D-module reps and invariant actions

Francesco Toppan, N.L. Holanda

Resumo


(Super)conformal mechanics in one dimension is induced by parabolic or hyperbolic/trigonometric
transformations, either homogeneous (for a scaling dimension $\lambda$) or inhomogeneous (at $\lambda=0$, with $\rho$ an inhomogeneity parameter).  Four types of inequivalent
(super)conformal actions are thus obtained. With the exclusion of the homogeneous parabolic case, dimensional constants are present. \par
Both the inhomogeneity and the insertion of $\lambda$ generalize the construction of Papadopoulos [CQG 30 (2013) 075018; arXiv:1210.1719].\par
Inhomogeneous $D$-module reps are presented for the $d=1$ superconformal algebras $osp(1|2)$,
$sl(2|1)$, $B(1,1)$ and $A(1,1)$. For centerless superVirasoro algebras $D$-module reps are presented
(in the homogeneous case for ${\cal N}=1,2,3,4$; in the inhomogeneous case for ${\cal N}=1,2,3$).\par
The four types of $d=1$ superconformal actions are derived for ${\cal N}=1,2,4$ systems.  When ${\cal N}=4$, the homogeneously-induced  actions are $D(2,1;\alpha)$-invariant ($\alpha$ is critically linked to $\lambda$); the inhomogeneously-induced actions are $A(1,1)$-invariant.\par
In $d=2$, for a single bosonic field, the homogeneous transformations induce a conformally invariant power-law action, while the inhomogeneous transformations induce the conformally invariant Liouville action. 

Texto completo:

PDF

Referências


G. Papadopoulos, Class. Quant. Grav. 30 (2013) 075018; arXiv:1210.1719[hep-th].

Z. Kuznetsova and F. Toppan, J. Math. Phys. 53 (2012) 043513; arXiv:1112.0995[hep-th].

S. Khodaee and F. Toppan, J. Math. Phys. 53 (2012) 103518; arXiv:1208.3612[hepth].

V. de Alfaro, S. Fubini, and G. Furlan, Nuovo Cimento A 34 (1976) 569.

S. Fubini and E. Rabinovici, Nucl. Phys. B 245, (1984) 17.

V. P. Akulov and A. I. Pashnev, Theor. Math. Phys. 56 (1983) 862 [Teor. Mat. Fiz. 56 (1983) 344].

E. Ivanov, S. Krivonos, and V. Leviant, J. Phys. A 22 (1989) 4201.

D. Z. Freedman and P. Mende, Nucl. Phys. B 344 (1990) 317.

P. Claus, M. Derix, R. Kallosh, J. Kumar, P. Townsend, and A. van Proeyen, Phys.

Rev. Lett. 81 (1998) 4553; arXiv:hep-th/9804177.

J. A. de Azcarraga, J. M. Izquierdo, J. C. Perez Bueno, and P. K. Townsend, Phys.

Rev. D 59 (1999) 084015; arXiv:hep-th/9810230.

N. Wyllard, J. Math. Phys. 41 (2000) 2826; arXiv:hep-th/9910160.

R. Britto-Pacumio, J. Michelson, A. Strominger, and A. Volovich, Lectures on su-perconformal quantum mechanics and multi-black hole moduli spaces, in Progress inString Theory and M-Theory, NATO Science Series Vol. 564, Kluwer Acad. Press (2001) 235; arXiv:hep-th/9911066.

G. Papadopoulos, Class. Quantum Grav. 17 (2000) 3715; arXiv:hep-th/0002007.

S. Fedoruk, E. Ivanov and O. Lechtenfeld, J. Phys. A 45 (2012) 173001;

arXiv:1112.1947[hep-th].

E. E. Donets, A. Pashnev, V. O. Rivelles, D. Sorokin, and M. Tsulaia, Phys. Lett. B 484 (2000) 337; arXiv:hep-th/0004019.

S. Bellucci, S. Krivonos, and E. Orazi, Phys. Lett. B 597 (2004) 208; arXiv:hepth/ 0407015.

E. Ivanov, S. Krivonos, and O. Lechtenfeld, JHEP 0303 (2003) 014; arXiv:hepth/ 0212303.

E. Ivanov, S. Krivonos, and O. Lechtenfeld, Class. Quantum Grav. 21 (2004) 1031; arXiv:hep-th/0310299.

E. Ivanov and J. Niederle, Phys. Rev. D 80 (2009) 065027; arXiv:0905.3770[hep-th].

S. Fedoruk, E. Ivanov, and O. Lechtenfeld, JHEP 0908 (2009) 081; arXiv:0905.4951 [hep-th].

S. Fedoruk, E. Ivanov, and O. Lechtenfeld, JHEP 1004 (2010) 129; arXiv:0912.3508[hep-th].

S. Krivonos and O. Lechtenfeld, JHEP 1102 (2011) 042; arXiv:1012.4639[hep-th].

F. Toppan, J. Nonlin. Math. Phys. 8 (2001) 518; arXiv: math-ph/0105051.

V. G. Kac, Commun. Math. Phys. 53 (1977) 31.

W. Nahm, V. Rittenberg, and M. Scheunert, J. Math. Phys. 17 (1976) 1626; 17 (1976) 1640.

L. Frappat, A. Sciarrino, and P. Sorba, Dictionary on Lie Algebras and Superalgebras, (Academic, London, 2000); arXiv:hep-th/9607161.

F. Toppan, Critical D-module reps for _nite superconformal algebras and their super- conformal mechanics, in XXIX ICGTMP, Tianjin (China), Symmetries and groups inContemporary Physics. World Scienti_c (2013) v. 11 p. 417; arXiv:1302.3459[mathph].

E. Witten, Nucl. Phys. B 188 (1981) 513.

A. Pashnev and F. Toppan, J. Math. Phys. 42 (2001) 5257; arXiv:hep-th/0010135.

Z. Kuznetsova, M. Rojas and F. Toppan, JHEP 0603 (2006) 098; arXiv:hepth/0511274.

P. Grozman, D. Leites and I. Shchepochkina, Acta Math. Viet. 26 (2005) 27; arXiv: hep-th/9702120.

M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Vol. 1 and 2, Cambridge Univ. Press (1988).

A. N. Leznov, M. V. Savelev and D. A. Leites, Phys. Lett. B 96 (1980) 97.

F. Toppan, Phys. Lett. B 260 (1991) 346.

A. Sen, Entropy 13 (2011) 1305; arXiv:1101.4254[hep-th].

C. Chamon, R. Jackiw, S.-Y. Pi and L. Santos, Phys. Lett. B 701 (2011) 503; arXiv:1106.0726[hep-th].

A. Galajinsky and I. Masterov, Phys. Lett. B 723 (2013) 190; arXiv:1303.3419[hepth].

K. Andrzejewski, A. Galajinsky, J. Gonera and I. Masterov, arXiv:1402.1297[hep-th].

S. A. Hartnoll, Class. Quant. Grav. 26 (2009) 224002; arXiv:0903.3246[hep-th].

S. Sachdev, Lect. Notes Phys. 828 (2011) 273; arXiv:1002.2974[hep-th].

N. Aizawa, Z. Kuznetsova and F. Toppan, J. Math. Phys. 53 (2013) 093506; arXiv:1307.5259[hep-th].


Apontamentos

  • Não há apontamentos.