On the spectrum-generating superalgebras of the \\deformed one-dimensional quantum oscillators

N. Aizawa, F. Toppan

Resumo


We investigate the dynamical symmetry superalgebras of the one-dimensional Matrix Superconformal Quantum Mechanics with Calogero potential. They act as spectrum-generating superalgebras for the systems with the addition of the de Alfaro-Fubini-Furlan oscillator term.
The undeformed quantum oscillators are expressed by $2^n\times 2^n$ supermatrices; their corresponding spectrum-generating superalgebras are given by the $osp(2n|2)$ series.
For $n=1$ the addition of a Calogero potential does not break the $osp(2|2)$ spectrum-generating superalgebra.
For $n=2$ two cases of Calogero potential deformations arise. The first one produces Klein deformed quantum oscillators; the corresponding spectrum-generating superalgebras are given by the $D(2,1;\alpha)$ class, with $\alpha$ determining the Calogero coupling constants.
The second $n=2$ case corresponds to deformed quantum oscillators of non-Klein type. In this case the
$osp(4|2)$ spectrum-generating superalgebra of the undeformed theory is broken to $osp(2|2)$.
The choice of the Hilbert spaces corresponding to the admissible range of the Calogero coupling constants and
the possible direct sum of lowest weight representations of the spectrum-generating superalgebras is presented.


Texto completo:

PDF

Referências


H. Miyazaki and I. Tsutsui, Ann. Phys. 299 (2002) 78; arXiv:quant-ph/0202037.

L. Feh´er, I. Tsutsui and T. F¨ul¨op, Nucl. Phys. B 715 (2005) 713; arXiv:math-ph/0412095. 3; arXiv:1112.0995[hep-th].

F. Calogero, J. Math. Phys. 10 (1969) 2191.

V. de Alfaro, S. Fubini and G. Furlan, Nuovo Cim. A 34 (1976) 569.

M. A. Vasiliev, Int. J. Mod. Phys. A 6 (1991) 1115.

M. S. Plyushchay, Ann. Phys. 245 (1996) 339; arXiv:hep-th/9601116.

P. J. Olver, Applications of Lie Groups to Differential Equations - 2nd Edition, Springer, New York (1991).

R. Britto-Pacumio, J. Michelson, A. Strominger, and A. Volovich, Lectures on superconformal quantum mechanics and multi-black hole moduli spaces, in Progress in String Theory and M-Theory, NATO Science Series Vol. 564, Kluwer Acad. Press (2001) 235; arXiv:hep-th/9911066.

A. Sen, JHEP 0811 (2008) 075; arXiv:0805.0095[hep-th].

C. Chamon, R. Jackiw, S-Y. Pi and L. Santos, Phys. Lett. B 701 (2011) 503; arXiv:1106.0726[hep-th].

S. Fedoruk, E. Ivanov and O. Lechtenfeld, J. Phys. A 45 (2012) 173001; arXiv:1112.1947[hep-th].

A. Pashnev and F. Toppan, J. Math. Phys. 42 (2001) 5257; arXiv:hep-th/0010135.

Z. Kuznetsova, M. Rojas and F. Toppan, JHEP 0603 (2006) 098; arXiv:hep-th/0511274.

Z. Kuznetsova and F. Toppan, J. Math. Phys. 53 (2012) 043513; arXiv:1112.0995[hep-th].

S. Khodaee and F. Toppan, J. Math. Phys. 53 (2012) 103518; arXiv:1208.3612[hep-th].

N. L. Holanda and F. Toppan, J. Math. Phys. 55 (2014) 061703; arXiv:1402.7298[hep-th].

G. Papadopoulos, Class. Quant. Grav. 30 (2013) 075018; arXiv:1210.1719[hep-th].

S. Fedoruk, E. Ivanov and O. Lechtenfeld, JHEP 0908 (2009) 081; arXiv:0905.4951[hep-th].

S. Fedoruk, E. Ivanov and O. Lechtenfeld, JHEP 1004 (2010) 061703; arXiv:1402.7298[hep-th].

E. Ivanov and S. Sidorov, Class. Quantum Grav. 31 (2014) 075013; arXiv:1307.7690[hep-th].[21] E. Ivanov, O. Lechtenfeld and S. Sidorov, JHEP 11 (2016) 031; arXiv:1609.00490[hep-th].

I. E. Cunha, N. L. Holanda and F. Toppan, Phys. Rev. D 96 (2017) 065014; arXiv:1610.0725[hep-th].

F. Toppan and M. Valenzuela, Adv. Math. Phys. (2018), ID 6263150; arXiv:1705.04004[hep-th].

N. Aizawa, Z. Kuznetsova and F. Toppan, J. Math. Phys. 59 (2018) 022101; arXiv:1711.02923[math-ph].

S. Okubo, J. Math. Phys. 32 (1991) 1657.

H. L. Carrion, M. Rojas and F. Toppan, JHEP 0304 (2003) 040; arXiv:hep-th/0302113.

S. Fedoruk and E. Ivanov, Multiparticle

N = 8 mechanics with F (4) superconformal symmetry, arXiv:1810.13366[hep-th].

M. A. Vasiliev, From Coxeter Higher-Spin Theories to Strings and Tensor Models, arXiv:1804.06520[hep-th].

V. G. Kac, Comm. Math. Phys. 53 (1977) 31.

L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie algebras and superalgebras, Academic Press, London (2000); arXiv:hep-th/9607161.

F. Toppan, Nankai Series in Pure App. Math. and Th. Phys. 11 (2013), 417; arXiv:1302.3459[math-ph].

E. Witten, Nucl. Phys. B 188 (1981) 513.

M. A. Olshanetsky and A. M. Perelomov, Phys. Rep. 94 (1983) 313.


Apontamentos

  • Não há apontamentos.