On Light-like Deformations of the Poincaré Algebra

Zhanna Kuznetsova, Francesco Toppan

Resumo


We investigate the observational consequences of the light-like deformations of the Poincar´e algebra induced by the jordanian and the extended jordanian classes of Drinfel’d twists. Twist-deformed generators belonging to a Universal Enveloping Algebra close non-linear W -algebras. In some cases the W -algebra is responsible for the existence of bounded domains of the deformed generators. The Hopf algebra coproduct implies associative non-linear additivity of the multi-particle states. A subalgebra of twist-deformed observables is recovered whenever the twist-deformed generators are either hermitian or pseudo-hermitian with respect to a common in-vertible hermitian operator.

Texto completo:

PDF

Referências


B. Chakraborty, Z. Kuznetsova and F. Toppan, J. Math. Phys. 51 (2010) 112102; arXiv:1002.1019[hep-th].

P. G. Castro, B. Chakraborty, R. Kullock and F. Toppan, J. Math. Phys. 52 (2011).032102; arXiv:1012.5158[hep-th].

P. G. Castro, R. Kullock and F. Toppan, J. Math.Phys. 52 (2011) 062105;

arXiv:1104.3852[hep-th].

Z. Kuznetsova and F. Toppan, Eur. Phys. J. C 73 (2013) 2483; arXiv:1301.5501[hep-th].

J. Lukierski, H. Ruegg, A. Nowicki and V. N. Tolstoi, Phys. Lett. B 264 (1991) 331.

J. Lukierski, A. Nowicki and H. Ruegg, Phys. Lett. B 293 (1992) 344.

J. Lukierski, H. Ruegg and W. J. Zakrzewski, Ann. Phys. 243 (1995) 90; arXiv:hep-th/9312153.

G. Amelino-Camelia, Nature 418 (2002) 34; arXiv:gr-qc/0207049.

G. Amelino-Camelia, Symmetry 2 (2010) 230; arXiv:1003.3942[gr-qc].

J. Magueijo and L. Smolin, Phys. Rev. Lett. 88 (2002) 190403; arXiv:hep-th/0112090.

J. Magueijo and L. Smolin, Phys. Rev. D 67 (2003) 044017; arXiv:gr-qc/0207085.

P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp and J. Wess, Class. Quant. Grav. 22 (2005) 3511; arXiv:hep-th/0504183.

V. G. Drinfel’d, Sov. Math. Dokl. 32 (1985) 254; Dokl. Akad. Nauk SSSR 283 (1985) 1060; J. Sov. Math. 41 (1988) 898.

N. Reshetikin, Lett. Math. Phys. 20 (1990) 331.

M. Dubois-Violette and G. Launer, Phys. Lett. B 245 (1990) 175.

C. Ohn, Lett. Math. Phys. 25 (1992) 85.

O. Ogievetsky, Rend. Circ. Mat. Palermo (2) Suppl. 37 (1993) 185.

P. P. Kulish, V. D. Lyachovsky and A. I. Mudrov, J. Math. Phys. 40 (1999) 4569; arXiv:math/9806014.

A. Borowiec, J. Lukierski and V. N. Tolstoy, Eur. Phys. J. C 48 (2006) 633; arXiv:hep-th/0604146.

A. Borowiec and A. Pachol, Phys. Rev. D 79 (2009) 045012; arXiv:0812.0576[math-ph].

A. Borowiec and A. Pachol, Eur. Phys. J. C 74 (2014) 2812; [arXiv:1311.4499[math-ph].

T. Juri´c, D. Kovaˇcevic´ and S. Meljanac, SIGMA 10 (2014) 106; arXiv:1402.0397[math-ph].

A. Borowiec and A. Pachol, SIGMA 10 (2014) 107; arXiv:1404.2916[math-ph].

T. Juri´c, S. Meljanac and D. Pikutic, Eur. Phys. J. 75 (2015) 528; arXiv:1506.04955[hep-th].

S. Meljanac, A. Pachol and D. Pikutic, Phys. Rev. D 92 (2015) 105015; arXiv:1509.02115[hep-th].

S. Meljanac, D. Meljanac, A. Pacho l and D. Pikuti´c, J. Phys. A 50 (2017) 265201; arXiv:1612.07984[math-ph].

F. Bopp, Ann. Inst. Henri Poincar´e 15 (1956) 81.

P. Aschieri, A. Borowiec and A. Pachol, JHEP 10 (2017) 152; arXiv:1703.08726[hep-th].

E. Abe, Hopf Algebras, Cambridge University Press, Cambridge (1980).

S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge (1995).

M. E. Sweedler, Hopf Algebras, Benjamin, New York (1969).

P. Aschieri, Lectures on Hopf Algebras, Quantum Groups and Twists, arXiv:hep-th/0703013.

P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, Class. Quant. Grav. 23 (2006) 1883; arXiv:hep-th/0510059.

A. Mostafazadeh, J. Phys. A 36 (2003) 7081; arXiv:quant-ph/0304080.


Apontamentos

  • Não há apontamentos.