Convergence and applications of some solutions of the confluent Heun equation
Resumo
Texto completo:
PDFReferências
L.J. El-Jaick, B.D.B. Figueiredo,
Integral relations for solutions of the confluent Heun equation, {Appl. Math. Comput. }
{256} (2015) 885–904. arXiv:1311.3703v3.
E.W. Leaver, Solutions to a generalized spheroidal wave equation: Teukolsky equations in general relativity, and the two-center problem in molecular
quantum mechanics, J. Math. Phys. 27 (1986) 1238-1265.
}A.M. Ishkhanyan, A. Grigoryan, Fifteen classes of solutions of the quantum two-state problem in terms of the confluent Heun function, J. Phys. A Math.
Theor. 47 (2014) 465205.
L.J. El-Jaick, B.D.B. Figueiredo, Solutions for confluent and double-confluent Heun equations, J. Math. Phys. 49 (2008) 083508. arXiv:0807.2219v2.
E. Fisher, Some differential equations involving
three-term recursion formulas, {Phil. Mag.} {24} (1937) 245-256.
J.W. Liu, Analytical solutions to the generalized spheroidal wave
equation and the Green's function of one-electron diatomic molecules,
{J. Math. Phys.} {33 } (1992) 4026-4036.
B.D.B. Figueiredo, On some solutions
to generalized spheroidal
wave equations and applications, {J. Phys. A: Math. and Gen.} {35} (2002) 2877-2906.
A.H. Wilson, A generalised spheroidal wave equation, Proc. R. Soc. London A118 (1928) 617–635.
F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Eds.), NIST Handbook of Mathematical Functions, (National Institute of Standards and Tecnology)
Cambridge University Press, 2010.
}W. Gautschi, Computational aspects of three-term
recurrence relations {SIAM
Rev.} {9} (1967) 24-82.
W. Gautschi, Minimal solutions of three-term recurrence relations and orthogonal polynomials, Math. Comput. 36 (154) (1981) 447-554.
E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University Press, 1954.
K. Knopp, Infinite Sequences and Series, Dover, 1956.
F.M. Arscott, Periodic Differential Equations, Pergamon Press, 1964.
A. Erd'elyi (Ed.), Higher Transcendental Functions, vol. 1, McGraw-Hill, 1953.
A. Decarreau, M.C. Dumont-Lepage, P. Maroni, A. Robert, A. Ronveaux, Formes canoniques des 'equations confluentes de l''equation de Heun, Ann. Soc.
Sci. Brux. T92 (I–II) (1978) 53-78.
L.J. El-Jaick, B.D.B. Figueiredo, Confluent and
double-confluent Heun equations: convergence of
solutions in series of Coulomb wavefunctions,
arXiv:1209.4673v2 [math-ph] 2015.
M. Kus, M. Lewenstein,
Exact isolated solutions for the class of quantum optical-systems,
{J. Phys. A: Math. Gen.} {19} (1986) 305-318.
E.G. Kalnins, W. Miller, G.S. Pogosyan,
Exact and quasiexact solvability of second-order superintegrable
quantum systems: I. Euclidian space preliminaries,
{J. Math. Phys.} {47} (2006) 033502.
D.B. Hodge, Eigenvalues and eigenfunctions of the spheroidal wave equation, {J. Math. Phys.}
(1970) 2308-2312.
P.E. Falloon, P.C. Abbott, J.B. Wang,
Theory and computation of spheroidal wavefunctions,
{J. Phys. A: Math. Gen.} {36} (2003) 5477–5495.
B.D.B. Figueiredo, Ince's limits for confluent
and double-confluent Heun equations, {J. Math. Phys.} {46} (2005)
L.J. El-Jaick, B.D.B. Figueiredo,
A limit of the confluent Heun equation and the Schr"odinger
equation for an inverted potential and for an electric dipole,
{J. Math. Phys.} {50} (2009) 123511.
P.K. Jha, Y.V. Rostovtsev,
Coherent excitation of a two-level atom driven by a far-off-resonant classical field:
analytical solutions, {Phys. Review A} {81} (2010) 033827.
M. Renardy, On the eigenfunctions for Hookean and FENE dumbbell models,
{Journal of Rheology} {57} (3013) 1311-1324
N. Barbosa-Cendejas, A. Herrera-Aguilar,
K. Kanakoglou, U. Nucamendi, U. Quiros, Mass hierarchy, mass gap and corrections to Newton's
law on thick branes with Poincar'e symmetry, {Gen. Relativ. Gravit.} {46} (2014) 1631.
A. Grabsch, C. Texier, ·
Y. Tourigny, One-dimensional disordered quantum mechanics and
Sinai diffusion with random absorbers, {J. Stat. Phys.} {155} (2014) 237-276.
A.F. Dossa, G.Y.H. Avossevou,
Analytical spectrum for a Hamiltonian of quantum dots with Rashba spin-orbit coupling, {Phys. Scr.} {89} (2014) 125803.
W.G. Baber, H.R. Hass'e,
The two centre problem in
wave mechanics, {Proc. Cambr. Philos. Soc.} {25} (1935) 564-581.
Apontamentos
- Não há apontamentos.