The enigma of dark matter and its possible connection with Wigner's innite spin representations

Bert Schroer

Resumo


Positive energy ray representations of the Poincar ́ group are naturally subdivided into threeeclasses according to their mass and spin content: m>0, m=0 finite helicity and m=0 infinite helicity.For a long time the localization properties of the massless infinite spin class remained unknown beforeit became clear that such matter does not permit compact spactime localization and its generatingcovariant fields are localized on semi-infinite spacelike strings.It is shown that such matter cannot interact with normal matter within the conceptual setting ofQFT since any such coupling leads to a total delocalization in higher perturbative orders. However,as any positive energy matter, it interacts with gravity. Its inert behavior with respect to ordinarymatter makes it an ideal candidate for dark matter.

Texto completo:

PDF

Referências


E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40, (1939)

S. Weinberg, The Quantum Theory of Fields I, Cambridge University Press 1991

H. Epstein and V. Glaser, Ann. Inst. Poincare A19, (1973) 211

L. F. Abbott, Massless particles with continuous spin indices, Physical Review D, 13(8), 2291 (1976).

P. Schuster and N. Toro. A gauge eld theory of continuous-spin particles, JHEP 20, (2013) 10

J. Yngvason, Zero-mass innite spin representations of the Poincare group and quantum eld theory,

Commun. Math. Phys. 18 (1970), 195

R. Brunetti, D. Guido and R. Longo, Modular localization and Wigner particles, Rev. Math. Phys.

, (2002) 759

J. Mund, B. Schroer and J. Yngvason, Commun. Math. Phys. 268, (2006) 621

Ch. Kohler, private communication

R. Longo, V. Morinelli and K-H. Rehren, Where Innite Spin Particles Are Localizable,

arXiv:1505.01759

B. Schroer, Modular localization and the d=1+1 formfactor program, Annals of Physics 295, (1999) 190

G. Lechner, An Existence Proof for Interacting Quantum Field Theories with a Factorizing S-Matrix,

Commun. Mat. Phys. 227, (2008) 821, arXiv.org/abs/math-ph/0601022

B. Schroer, Peculiarities of massive vectormesons, Eur. Phys. J. C (2015) 75:365

B. Schroer, Is inert matter from indecomposable positive energy innite spin" representations the

much sought-after dark matter?, arXiv:0802.2098v3, unpublished

B. Schroer, Beyond gauge theory: Hilbert space positivity and its connection with causal localization

in the presence of vector mesons, to appear

R. Haag, Local Quantum Physics, Springer Verlag Heidelberg 1996

B. Schroer, Modular localization and the holistic structure of causal quantum theory, a historical

perspective, SHPMP 49, (2015) 109

A. Jae, Phys. Rev. 158, (1967) 1454

G. Scharf, Quantum Gauge Theory, A True Ghost Story, John Wiley & Sons, Inc. New York 2001

D. Buchholz and K. Fredenhagen, Locality and the structure of particle states, Commun. Math. Phys.

, (1982) 1

J. Frohlich, G. Morchio and F. Strocchi, Phys. Lett. 89B, (1979) 61

B. Schroer, A Hilbert space setting for interacting higher spin elds and the Higgs issue, Found. Phys.

, (2015), arXiv:1407.0369

M. Plaschke and J. Yngvason, Journal of Math. Phys. 53, (2012) 042301

D. Buchholz and K. Fredenhagen, Nucl. Phys. B 154, (1979) 226

D. Buchholz and J. Roberts, New Light on Infrared Problems: Sectors, Statistics, Symmetries and

Spectrum, arXiv:1304.2794

B. Schroer, Fortschr. Phys. 173, (1963) 1527

D. Buchholz, Phys. Lett. B174, (1986) 331

J. Frohlich, G. Morchio and F. Strocchi, Ann. of Phys. 119, 241 (1979)

S. Hollands, Renormalized Quantum Yang-Mills Fields in Curved Spacetime, Rev. Math. Phys. 20,

(2008) 1033, arXiv:0705.3340

E. _Inonu, E.P. Wigner, On the Contraction of Groups and Their Representations, Proc. Nat. Acad.

Sci. 39 (6), (1953) 510

D. Yenni, S. Frautschi and H. Suura, Ann. of Phys. 13, (1961) 370

S. Doplicher, J.E. Roberts, Why there is a eld algebra with a compact gauge group describing the

superselection structure in particle physics, Commun. Math. Phys. 131, (1990), 51

B. Schroer, The Ongoing Impact of Modular Localization on Particle Theory, Sigma 10, (2014) 0652


Apontamentos

  • Não há apontamentos.