Beyond gauge theory: Hilbert space positivity and causal localization in the presence of vector mesons

Bert Schroer

Resumo


The Hilbert space formulation of interacting s = 1 vector-potentials stands in an interesting con-trast with the point-local Krein space setting.of gauge theory. Already in the absence of interactionsthe Wilson loop in a Hilbert space setting has a ”topological property” which is missing in the gaugetheoretic description (Haag duality, Aharonov-Bohm effect); the conceptual differences increase in thepresence of interactions.The Hilbert space positivity weakens the causal localization properties if interacting fields whichresults in the replacement of the gauge-variant point-local matter fields in Krein space by string-localphysical fields in Hilbert space. The gauge invariance of the perturbative S-matrix corresponds to itsindependence of the spacelike string direction of its interpolating.fields. In contrast to gauge theory,whose physical range is limited to gauge invariant perturbative S-matrix and local observables, itsHilbert space string-local counterpart in is a full-fledged quantum field theory (QFT).The new setting reveals that the Lie-structure of self-coupled vector mesons results from pertur-bative implementation of the causal localization principles of QFT.

Texto completo:

PDF

Referências


P.Jordan,ZurQuantenelektrodynamik,I.EichinvarianteOperatoren,Zeitschriftf¨urPhysik95,(1935) 202

S. Mandelstam, Quantum electrodynamics without potentials, Ann. Phys. 19 (1962), 1–24.

R. Brunetti, D. Guido and R. Longo, Modular localization and Wigner particles, Rev. Math. Phys. 14, (2002) 759

J. Mund, B. Schroer and J. Yngvason, String-localized quantum fields and modular localization, CMP 268 (2006) 621, math-ph/0511042

B. Schroer, Modular localization and the holistic structure of causal quantum theory, a historical perspective, SHPMP 49, (2015) 109

D. Buchholz and K. Fredenhagen, Locality and the structure of particle states, Commun. Math. Phys. 84, (1982) 1

J. Mund, String–localized quantum fields, modular localization, and gauge theories, New Trends in Mathematical Physics (V. Sidoravicius, ed.), Selected contributions of the XVth Int. Congress on Math. Physics, Springer, Dordrecht, 2009, pp. 495

B. Schroer, Peculiarities of massive vector mesons and their zero mass limits, Eur. Phys. J. C (2015) 75:365

G. Scharf, Quantum Gauge Theory, A True Ghost Story, John Wiley & Sons, Inc. New York 2001

A. Aste, G. Scharf and M. Duetsch, J. Phys. A30, (1997) 5785

M. Duetsch, J. M. Gracia-Bondia, F. Scheck, J. C. Varilly, Quantum gauge models without classical Higgs mechanism, Eur. Phys. J. C89, (2012) 599, arXiv:1001.0932

R. S. Streater and A. S. Wightman, PCT, Spin and Statistics and all that, New York: Benjamin 1964

R. Haag, Local Quantum Physics, Springer Verlag Heidelberg 1996

K. Bardackci and B. Schroer, Local Approximations in Renormalizable and Nonrenormalizable Theo-ries II, J. Math. Phys 7, (1966) 16

A. Jaffe, Phys. Rev. 158, (1967) 1454

P. Leyland, J. Roberts and D. Testard, Duality for quantum free fields, Centre de Physique Th´eorique, CNRS Marseille, July 1978

D. Buchholz, F. Ciolli, G. Ruzzi and E. Vasselli, The universal C*-algebra of the electromagnetic field, arXiv:1506.06603

B. Schroer, Fortschr. Phys 173, (1963) 1527

G. Morchio and F. Strocchi, Nucl. Phys. B 3, (1983) 471

D. Buchholz, Commun. Math. Phys. 85, (1982) 40

J. Fr¨ohlich, G. Morchio and F. Strocchi, Phys. Lett. 89B, (1979) 61

F. Bloch and A. Nordsieck, Phys. Rev. 52, (1937) 54

D. Buchholz and J. Roberts, New Light on Infrared Problems: Sectors, Statistics, Symmetries and Spectrum, arXiv:1304.2794

D. N. Levin and G. Tiktopoulos, Phys. Rev. D 12, (1975) 415

J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. D 10, (1974) 1124

H. Ezawa and J. A. Swieca, Commun. Math. Phys. 5, (1967) 330

P. W. Higgs, Phys. Lett. 12, (1964) 132

D. Yenni, S. Frautschi and H. Suura, Ann. of Phys. 13, (1961) 370

S. Hollands, Renormalized Quantum Yang-Mills Fields in Curved Spacetime, Rev. Math. Phys. 20,(2008) 1033, arXiv:0705.3340

M. D¨utsch and B. Schroer. J. Phys. A 33, (2000) 4317

M. Plaschke and J. Yngvason, Journal of Math. Phys. 53, (2012) 042301


Apontamentos

  • Não há apontamentos.