Invariant PDEs with Two-dimensional Exotic Centrally Extended Conformal Galilei Symmetry

N. Aizawa, Z. Kuznetsova, F. Toppan

Resumo


Conformal Galilei Algebras labeled by $d,\ell$ (where $d$ is the number of space dimensions and $\ell$ denotes a spin-${\ell}$ representation w.r.t. the $\mathfrak{sl}(2)$ subalgebra) admit two types of central extensions, the ordinary one (for any $d$ and half-integer $\ell$) and the exotic central extension which only exists for $d=2$ and ${\ell}\in\mathbb{N}$.\par

For both types of central extensions invariant second-order PDEs with continuous spectrum were constructed in \cite{AKS}. It was later proved in \cite{AKT1} that the ordinary central extensions also lead to oscillator-like PDEs with discrete spectrum.\par

We close in this paper the existing gap, constructing \textcolor{black}{a new class of second-order invariant PDEs for the exotic centrally extended CGAs; they admit a discrete and bounded spectrum when applied to a lowest weight representation}. These PDEs are markedly different with respect to their ordinary counterparts. The ${\ell}=1$ case (which is the prototype of this class of extensions, just like the $\ell=\frac{1}{2}$ Schr\"odinger algebra is the prototype of the ordinary centrally extended CGAs) is analyzed in detail. 

Texto completo:

PDF

Referências


N. Aizawa, Y. Kimura and J. Segar, J. Phys. A 46 (2013) 405204.

N. Aizawa, Z. Kuznetsova and F. Toppan, J. Math. Phys. 3 (2015) 031701.

J. Negro, M. Del Olmo and A. Rodriguez-Marco, J. Math. Phys. 7 (1997) 3786.

D. Martelli and Y. Tachikawa, JHEP 5 (2010) 1.

S. A. Hartnoll, Class. Quant. Grav. 26 (2009) 224002.

C. Duval and P. A. Horv´athy, J. Math. Phys. 35 (1994) 2516; Yu. Nakayama, M. Sakaguchi

and K. Yoshida JHEP 04 (2009) 096; J. A. de Azc´arraga and J. Lukierski, Phys. Lett. B 678 (2009) 411; S. Fedoruk and J. Lukierski, Phys. Rev. D 84 (2011) 065002; M. Sakaguchi, J. Math. Phys. 51 (2010) 042301; I. Masterov, J. Math. Phys. 53 (2012) 072904; N. Aizawa, J. Phys. A 45 (2012) 475203; N. Aizawa, Z. Kuznetsova and F. Toppan, J. Math. Phys. 54 (2013) 093506.

J. Lukierski, P. C. Stichel and W. J. Zakrzewski, Phys. Lett. A 357 (2006) 1; J. Gomis and K. Kamimura, Phys. Rev. D 85 (2012) 045023; K. Andrzejewski, J. Gonera and P. Maslanka, Phys. Rev. D 86 (2012) 065009.

K. Andrzejewski, A. Galajinsky, J. Gonera and I. Masterov, Nucl. Phys. B 885 (2014) 150.

N. Aizawa, Z. Kuznetsova and F. Toppan, Invariant PDEs of Conformal Galilei Algebra as deformations: cryptohermiticity and contractions, arXiv:1506.08488.

F. Toppan, J. Phys. Conf. Ser. 597 (2015) 012071.[11] U. Niederer, Helv. Phys. Acta 45 (1972) 802.

P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd Edition, Springer-Verlag New York, 1993.

A. Smilga, SIGMA 5 (2009) 017.


Apontamentos

  • Não há apontamentos.