A world-line framework for $1D$ Topological Conformal $\sigma$-models
Resumo
$(2,2,0)$ chiral and ($1,2,1)$ real supermultiplets of the twisted $D$-module representations of the $sl(2|1)$ superalgebra. The derived one-dimensional topological conformal $\sigma$-models are invariant under nilpotent operators. The actions are constructed for both parabolic and hyperbolic/trigonometric realizations (with extra potential terms in the latter case). The scaling dimension $\lambda$ of the supermultiplets defines a coupling constant, $2\lambda+1$, the free theories being recovered at $\lambda=-\frac{1}{2}$.
We also present, generalizing previous works, the $D$-module representations of one-dimensional superconformal algebras induced by ${\cal N}=(p,q)$ pseudo-supersymmetry acting on $(k,n,n-k)$ supermultiplets. Besides $sl(2|1)$,
we obtain the superalgebras $A(1,1)$, $D(2,1;\alpha)$, $D(3,1)$, $D(4,1)$, $A(2,1)$ from $(p,q)= (1,1), (2,2), (3,3), (4,4), (5,1)$, at given $k,n$ and critical values of $\lambda$.
Texto completo:
PDFReferências
G. Papadopoulos, Class. Quant. Grav. 30 (2013) 075018; arXiv:1210.1719[hep-th].
N. L. Holanda and F. Toppan, J. Math. Phys. 55 (2014) 061703; arXiv:1402.7298[hep-th].[3] L. Baulieu and F. Toppan, Nucl. Phys. B 855 (2012) 742; arXiv:1108.4370[hep-th].
Z. Kuznetsova and F. Toppan, J. Math. Phys. 53 (2012) 043513; arXiv:1112.0995[hep-th].[5] S. Khodaee and F. Toppan, J. Math. Phys. 53 (2012) 103518; arXiv:1208.3612[hep-th].
L. Baulieu and B. Grossman, Phys. Lett. B 212 (1988) 351.
D. Birmingham, M. Rakowski and G. Thompson, Phys. Lett. B 214 (1988) 381.
L. Baulieu and I. M. Singer, Commun. Math. Phys. 125 (1989) 227.
L. Baulieu and F. Toppan, Lett. Math. Phys. 98 (2011) 299; arXiv:1010.3004[hep-th].
L. Alvarez-Gaum´e and D. Freedman, Commun. Math. Phys. 80 (1981) 443.
E. Witten, Nucl. Phys. B 201 (1982) 253.
E. Witten, J. Diff. Geom. 17 (1982) 661.
R. Coles and G. Papadopoulos, Class. Quant. Grav. 7 (1990) 427.
J. Figueroa-O’Farrill, C. K¨ohl and B. Spence, Nucl. Phys. B 503 (1997) 614; arXiv:hep-th/9705161.
A. Singleton, JHEP 0406 (2014) 131; arXiv:1403.4933[hep-th].
V. P. Akulov and A. I. Pashnev, Theor. Math. Phys. 56 (1983) 862; Teor. Mat. Fiz. 56.
(1983) 344.
S. Fubini and E. Rabinovici, Nucl. Phys. B 245 (1984) 17.
R. Britto-Pacumio, J. Michelson, A. Strominger and A. Volovich, in Progress in String
Theory and M-Theory, NATO Science Series 564 (2001) 235; arXiv:hep-th/9911066.
S. Fedoruk, E. Ivanov and O. Lechtenfeld, JHEP 1004 (2010) 129; arXiv:0912.3508[hep-th].[20] E. Witten, Nucl. Phys. B 188 (1981) 513.
A. Pashnev and F. Toppan, J. Math. Phys. 42 (2001) 5257; arXiv:hep-th/0010135.
Z. Kuznetsova, M. Rojas and F. Toppan, JHEP 0603 (2006) 098; arXiv:hep-th/0511274.
V. G. Kac, Commun. Math. Phys. 53 (1977) 31.
L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie Algebras and Superalgebras, Academic, London (2000); arXiv:hep-th/9607161.
E. Ivanov, S. Sidorov and F. Toppan, Phys. Rev D 91 (2015) 8, 085032; arXiv:1501.05622[hep-th].
F. Toppan, in Symmetries and groups in Contemporary Physics. Proceedings of the XXIX ICGTMP, Singapore, World Scientific, v. 11 (2013) p. 417; arXiv:1302.3459[math-ph].
L. Baulieu and E. Rabinovici, Phys. Lett. B 316 (1993) 93.[28] F. Toppan, PoS IC 2006 (2006) 033; arXiv:hep-th/0610180.
M. G. Faux, K. Iga and G. D. Landweber, Adv. Math. Phys. 2011 (2011) 259089;
arXiv:0907.3605[hep-th].
A. Kapustin and E. Witten, Commun. Num. Theor. Phys. 1 (2007) 1; arXiv:hep-th/0604151.
S. J. Gates Jr. and T. H¨ubsch, Adv. Theor. Math. Phys. 16 (2012) 1619; arXiv:1104.0722.
Apontamentos
- Não há apontamentos.