Thermostatistics of a damped bi-modal particle
Resumo
subject to a work reservoir that is analytically represented by the telegraph noise. Because of
the coloured nature of the noise, this system does not t the Levy-It^o class of stochastic processes
making of it an instance of a non-equilibrium system in contact with an external reservoir. We
obtain the statistics for the position and velocity, namely in the steady state, as well as the (time
dependent) statistics of the energy uxes in the system considering no constraints on the noise
features. With that results we are able to give an account of the statistical features of the large
deviations of the injected and dissipated power that can change from sub-Gaussianity to super-
Gaussianity depending on the colour of the noise. By properly dening an effective temperature
for this system, T , we are capable of obtaining an equivalent entropy production/exchange rate
equal to the ratio between the dissipation of the medium, and the mass the particle, a relation
that concurs with the case of a standard thermal reservoir at temperature, T = T .
Texto completo:
PDFReferências
K. Huang, Statistical Mechanics (Willey, New York, 1987); Y. Demirel, Nonequilibrium
thermodynamics: transport and rate processes in physical and Biological systems (Amster-
dam: Elsevier); R. Klages, W. Just, and C. Jarzynski, editors, Nonequilibrium Statistical
Physics of Small Systems: Fluctuation Relations and Beyond (Wiley-VCH Verlag, Wein-
heim, 2013).
T. S Druzhinina, S. Hoeppener, and U. S. Schubert, Nano Lett. 10, 4009 (2010).
A. A. Balandin, Nat. Materials 10, 569 (2011).
S. Schnell, T. J. H. Vlugt, J.-M. Simon, D. Bedeaux, and S. Kjelstrup, Chem. Phys. Lett. 504 199 (2011).
K. Fujita, M. Iwaki, A. H. Iwane, L. Marcucci, and T. Yanagida, Nat. Commun. 3, 956 (2012).
A. Levy and R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012).
M. Osiak,W. Khunsin, E. Armstrong, T. Kennedy, C. M. Sotomayor Torres, K. M. Ryan, and C. ODwyer, Nanotechnology 24, 065401 (2013).
T. Czernik, J. Kula, J. Luczka, and P. Hanggi, Phys. Rev. E 55, 4057 (1997).
A. Baule and E. G. D. Cohen, Phys. Rev. E 79, 030103 (2009).
W. T. Coeffly, D. A. Garanin, and D. J. McCarthy, Adv. Chem. Phys. 117 483 (2001).
D. Applebaum, Levy Processes and Stochastic Calculus (Cambridge University Press, Cam- bridge, 2004).
W. A. M. Morgado and S. M. Duarte Queiros, Phys. Rev. E 86, 041108 (2012).
W. A. M. Morgado and S. M. Duarte Queiros, and D. O. Soares-Pinto, J. Stat. Mech.
(2011) P06010; 1997; W. A. M. Morgado and S. M. Duarte Queiros (submitted to Phys. Rev. E, 2015).
K. Kanazawa, T. Sagawa, and H. Hayakawa, Phys. Rev. E 87, 052124 (2013).
K. Kanazawa, T. G. Sano, T. Sagawa, and H. Hayakawa, Phys. Rev. Lett. 114 090601
(2015); K. Kanazawa, T. G. Sano, T. Sagawa, and H. Hayakawa, J. Stat. Phys. 160 1294 (2015).
G. H. Weiss, J. Stat. Phys. 15, 157 (1976).
F. Julicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69 1269, (1997).
C. R. Doering and J. C. Gadova, Phys. Rev. Lett. 69 2318, (1992).
L. Novotny, R. X. Bian and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
B. van der Pol and H. Bermmer, Operational Calculus Based on the Two-Sided Laplace Integral (Cambridge University Press, Cambridge, 1950). E. Gluskin, Eur J Phys 24 591, (2003).
M. J. I. Muller, S. Klumpp, and R. Lipowsky, Biophys. J. 98, 2610 (2010).
A. Gitterman, Physica A 221, 330 (1995).
A. B. Kolomeisky and M. E. Fisher, Annu. Rev. Phys. Chem. 58, 675 (2007).
G. Pster and H. Scher, Adv. Phys. 27, 747 (1978).
J. Giddings and H. Eyring, J. Phys. Chem. 59, 416 (1955).
C. R. de Oliveira, C. M. Arizmendi, and J. Sanchez, Physica A 330, 400 (2003).
Y. Jung, E. Barkai, and R. J. Silbey, Chem. Phys. 284, 181 (2002).
R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, Phys. Rev. Lett. 85, 3301 (2000).
J. Luczka, T. Czernik, and P. Hanggi, Phys. Rev. E 56, 3968 (1997).
M. O. Caceres and A. A. Budini, J. Phys. A 30, 8427 (1997); M. O. Caceres, Phys. Rev. E 67, 016102 (2003).
P. Allegrini, P. Grigolini and B. J. West, Phys. Rev. E 54, 4760 (1996); P. Allegrini, P. Grigolini, L. Palatella and B. J. West, Phys. Rev. E 70, 046118 (2004).
N. G. van Kampen Stochastic Processes in Physics and Chemestry (Elsevier, Amsterdam, 2007).
J. Marcinkiewicz, Math. Z. 44, 612 (1938).
H. Mori, Prog. Theo. Phys. 33, 423 (1965); R. Kubo, editor, 1965 Tokyo Summer Lectures in Theoretical Physics (Benjamin, New York, 1966).
F. D. Nobre, E. M. F. Curado, A. M. C. Souza and R. F. S. Andrade, Phys. Rev. E 91, 022135 (2015).
Y. Yura, H. Takayasu, D. Sornette and M. Takayasu, Phys. Rev. Lett. 112, 098703 (2014).
Apontamentos
- Não há apontamentos.