Eliminating the cuspidal temperature profile of a non-equilibrium chain
Resumo
and E. Lieb. Besides its anomalous heat conduction properties, the model is also characterised by
awkward cuspids at the ends of the non-equilibrium chain, an effect that has endured the various
generalisations of the model. We show that, for a proper combination of the border and bulk pinning
values, it is possible to shift from the cuspidal behaviour of the temperature prole to an expected
monotonous local temperature evolution along the system. We nd a transition regime characterised
by a perfect temperature plateau spanning the entire chain (excepting the elements in contact with
the reservoirs) separating cuspidal and monotonous behaviour. For each value of the pinning at the
border, there are two values of the bulk pinning for which the temperature prole is a straight line.
We also relate that change in the temperature prole with both heat transmission and re
ection in the chain. Among others, we learn that the rst transition | corresponding to the smaller of the
two critical edge pinning | takes place when the temperature of the particle connected with the
colder reservoir reaches its maximal value as well as the heat ux.
Texto completo:
PDFReferências
H. Nakazawa, Prog. Theor. Phys. Supp. 45 231 (1970).
S. Lepri, R. Livi and A. Politi, Phys. Rep. 377 1 (2003).
A. Dhar, Adv. Phys. 57 457 (2008).
F. Bonetto, J. L. Lebowitz and L. Rey-Bellet, Mathematical Physics 2000 edited by A. Fokas, A. Grigoryan, T. Kibble and B. Zegarlinsky (Im- perial College Press, London, 2000), page 128.
R. Kubo, M. Toda and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer, Berlin, 1991).
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Rinehart and Winston, New York, 1976).
P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).
Z. Rieder, J. L. Lebowitz and E. Lieb, J. Math. Phys. 8 1073 (1967).
K. Saito and A. Dhar, Phys. Rev. Lett. 104 040601 (2010).
V. Kannan, Heat Conduction in Low Dimensional Lattice Systems (Ph.D. Dissertation, School-New Brunswick Rutgers, The State University of New Jersey, 1995).
J. P. Huang and K. W. Yu, Phys. Rep. 431 87 (2006).
N. Yang, N. Li, L. Wang and B. Li, Phys. Rev. B 76 020301(R) (2007).
S. Lepri, R. Livi and A. Politi, Europhys. Lett. 43 271 (1998).
F. Bonetto, J. L. Lebowitz and J. Lukkarinen, J. Stat. Phys. 116 783 (2004).
A. Dhar, K. Venkateshan and J. L. Lebowitz, Phys. Rev. E 83 021108 (2011).
G. T. Landi and M. J. de Oliveira, Phys. Rev. E 89 022105 (2013).
P. G. Bergmann and J. L. Lebowitz, Phys. Rev. 99 578 (1955).
see for instance: V. Kannan, A. Dhar and J. L. Lebowitz, Phys. Rev. E 85 041118 (2012); J. D. Bodyfelt, M. C. Zheng, R. Fleischmann and T. Kottos, Phys. Rev. E 87 020101(R) (2013); G. T. Landi and M. J. de Oliveira, Phys. Rev. E 89
(2014); D. Lacoste and M. A. Lomholt, Phys. Rev. E 91 022114 (2015).
D. O. Soares-Pinto and W. A. M. Morgado W. A. M., Physica A 365 289 (2006).
B. van der Pol and H. Bermmer H., Operational Calculus Based on the Two-Sided Laplace Integral (Cambridge University Press, Cambridge, 1950).
D. J. R. Mimnagh, Thermal conductivity and dynamics of a chain of free and bound particles
(Ph.D. Dissertation, Simon Fraser University, 1997).
M. Toda, J. Phys. Soc. Japan 22 431 (1967).
G. Casati, J. Ford, F. Vivaldi and W. M. Visscher, Phys. Rev. Lett. 52 1861 (1984).
D. O. Soares-Pinto and W. A. M. Morgado, Phys. Rev. E 77 011103 (2008); W. A. M. Mor- gado and D. O. Soares-Pinto, Phys. Rev. E 79 051116 (2009); W. A. M. Morgado and S. M.
Duarte Queiros, Phys. Rev. E 86 041108 (2012); W. A. M. Morgado and S. M. Duarte Queiros, Phys. Rev. E 90 022110 (2014).
H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods: Applications to Physical System 2nd Ed. (Addison-Wesley, Read-ing - MA, 1995).
Apontamentos
- Não há apontamentos.