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Abstra
t

We investigate an integrable Hamiltonian modelling a hetero-triatomi
-mole
ular

Bose-Einstein 
ondensate. This model des
ribes a mixture of two spe
ies of atoms

in di�erent proportions, whi
h 
an 
ombine to form a triatomi
 mole
ule. Beginning

with a 
lassi
al analysis, we determine the �xed points of the system. Bifur
ations

of these points separate the parameter spa
e into di�erent regions. Three distin
t

s
enarios are found, varying with the atomi
 population imbalan
e. This result

suggests the ground state properties of the quantum model exhibits a sensitivity on

the atomi
 population imbalan
e, whi
h is 
on�rmed by a quantum analysis using

di�erent approa
hes, su
h as the ground-state expe
tation values, the behaviour of

the quantum dynami
s, the energy gap and the ground state �delity.

PACS: 02.30.Ik, 03.65.Sq, 03.75.Nt

1

Source: arXiv: arXiv:0902.0327v1 CBPF-NF-008/14

http://arxiv.org/abs/0902.0327v1


1 Introdu
tion

The experimental a
hievement that led to the Bose-Einstein 
ondensates (BECs), using

dilute alkali gases at ultra
old temperatures [1, 2℄, indu
ed a substantial e�ort dedi
ated

to the understanding of new properties of BECs. In parti
ular, the development of the

te
hniques used in the produ
tion and manipulation of ultra
old atoms and mole
ules [3℄

has opened the way to a new �eld, the "
hemistry" of ultra
old systems, i.e where the

atomi
 
onstituents of the dilute gas may re
ombine forming mole
ules. Su
h mole
ular

BEC 
ompounds have been obtained by di�erent te
hniques [4℄, for instan
e, by Feshba
h

resonan
es [5�7℄ or photoasso
iation [8℄. There 
an also o

ur atom-mole
ule intera
tions

that must be at least three-body in nature [9℄, bringing up new stimulus and 
hallenges to

our physi
al understanding. Experimental eviden
es for three-body re
ombinations [10℄

as well as for E�mov states [11℄ provide a physi
al ground and stimulus for the sear
h of

triatomi
 mole
ular BECs and for the investigation of their theoreti
al aspe
ts, whi
h is

our main interest.

>From the theoreti
al point of view, ultra
old atomi
 and mole
ular systems are


hara
terized by their large quantum �u
tuations. In this sense, it be
omes relevant the

sear
h for exa
tly solvable models des
ribing atomi
 and mole
ular BEC. Indeed this

has be
ome a very a
tive �eld of resear
h [12�20℄, and the experimental relevan
e of

these models is 
urrently a very a
tive resear
h subje
t [21℄. Those solvable models are

expe
ted to provide a signi�
ant impa
t in this area, a view that has been promoted

in [22, 23℄. In
reasing eviden
e and re
ent results show that multi-atomi
 systems may

be interesting and relevant for ultra
old atomi
-mole
ular in Bose-Einstein 
ondensates.

A signi�
ant question in this 
ontext is whether more 
omplex ultra
old mole
ules 
ould

be 
reated than simple dimers [24℄. Also, due to the more sophisti
ated nature of the


ontrol of the interatomi
 intera
tions, in the 
ase of triatomi
 mole
ules, one expe
ts

a ri
h quantum phase stru
ture. Indeed, very re
ent experimental results 
on�rm the

existen
e of heteroatomi
 bosoni
 trimers in ultra
old mixtures [25℄ whi
h provide us

with additional motivation to pursue the present investigation.

In this paper we analyze an integrable model des
ribing a hetero-triatomi
 mole
ular

Bose-Einstein 
ondensate where atomi
 BECs 
an 
ombine (in di�erent proportions) to

produ
e a 
ompound with two atoms of the same kind and a third one of a di�erent

spe
ies. Our model, that has been shown to be solvable in [26℄, in
ludes besides the

inter
onversion of atoms to mole
ules and vi
e-versa, a linear intera
tion 
orresponding

as the external potential and a bilinear intera
tion 
orresponding the s
attering between

atoms-atoms, atoms-mole
ules and mole
ules-mole
ules. We start our analysis of this

model by a 
lassi
al treatment where we obtain its phase spa
e determining in parti
ular

the �xed points. We �nd that for 
ertain 
oupling parameters bifur
ation of the �xed

points o

urs, and we 
an determine a parameter spa
e diagram whi
h 
lassi�es the

found �xed points. This diagram is determined for the imbalan
e of the number of atoms

whi
h allows us to 
lassify it in three distin
t 
ases. Spe
i�
ally, when the imbalan
e is

equal zero or negative there is a spontaneous appearan
e of additional boundaries in the

parameter spa
e (three for the zero 
ase and two for the negative 
ase), some of whi
h


an be identi�ed with bifur
ations of the minimum of the 
lassi
al Hamiltonian. We also

perform a quantum analysis, where we study the quantum dynami
s and 
ompare with
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the 
lassi
al results. Here we are interested in studying the ground state of the model,

be
ause as a
tual systems are in ultra
old temperature some insight 
an be obtained

from the ground state. Furthermore as pointed out before the presen
e of large quantum

�u
tuations make it interesting to look for the phase stru
ture at zero temperature, the

quantum phase transitions. In our 
ase we are able to look for signatures of quantum phase

transition. Here we use two de�nitions, energy gap and ground state �delity in order to

�nd a quantum phase pre-transition, a term that will be explained later. We observe that

the 
riti
al points are pinning down in 
ompletely agreement with the 
lassi
al analysis.

The paper is organized as follows. In se
tion 2 we present our integrable model.

Se
tion 3 is devoted to the 
lassi
al analysis where the parameter diagram are obtained.

Se
tion 4 is devoted to the quantum analysis where we show the quantum dynami
s and

a study about quantum phase pre-transition. Se
tion 5 is devoted to our 
on
lusions.

2 The model

Let us 
onsider the following Hamiltonian des
ribing a hetero-triatomi
-mole
ular Bose-

Einstein 
ondensate with two identi
al spe
ies of atoms, denoted by a whi
h 
an be


ombined to a di�erent type of atom, denoted by b, to produ
e a mole
ule labelled by c.
In terms of 
anoni
al 
reation and annihilation operators {a, b, c, a†, b†, c†} satisfying the

usual 
ommutation relations [a, a†] = I, et
., the Hamiltonian reads

H = UaaN
2
a + UbbN

2
b + UccN

2
c + UabNaNb + UacNaNc + UbcNbNc + (1)

+µaNa + µbNb + µcNc + Ω(a†a†b†c + c†baa).

The parameters Uij des
ribe S-wave s
attering, µi are external potentials and Ω is the

amplitude for inter
onversion of atoms and mole
ules. Ni are the number operators, i.e

Na = a†a is the number of atoms type a, Nb = b†b is the number of atoms type b and

Nc = c†c is the number of mole
ules.

The Hamiltonian a
ts on the Fo
k spa
e spanned by the (unnormalized) ve
tors

|Na; Nb; Nc〉 = (a†)Na(b†)Nb(c†)Nc|0〉, (2)

where |0〉 is Fo k va
uum.

The Hamiltonian above has two independent 
onserved quantities

N = Na + Nb + 3Nc, J = Na − 2Nb,

where N is the total number of atoms and J is the atomi
 imbalan
e. It is 
onvenient to

introdu
e k = J/N , as the fra
tional atomi
 imbalan
e. Sin
e there are three degrees of

freedom and three 
onserved quantities, the model is integrable. More details about the

integrability of this model, using the Bethe ansatz method, 
an be found in [26℄. In what

follows we will investigate this model in detail. Below we begin with a 
lassi
al analysis

of the model and determine the �xed points of the system.

3
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3 Classi
al analysis

Let Nj, θj , j = a, b, c, be quantum variables satisfying the 
anoni
al relations

[θj , θk] = [Nj, Nk] = 0, [Nj , θk] = iδjkI.

We make a 
hange of variables from the operators j, j†, j = a, b, c, to a number-phase

representation through

j = exp(iθj)
√

Nj , j = a, b, c,

su
h that the 
anoni
al 
ommutation relations are preserved. We perform an additional

hange of variables

z =
1

N
(Na + Nb − 3Nc),

θ =
N

6
(2θa + θb − θc),

su
h that z and θ are 
anoni
ally 
onjugate variables; i.e.

[z, θ] = iI.

In the limit of large N we 
an approximate the (res
aled) Hamiltonian by

H =
4ΩN2

36
[λz2 + 2(α − λ)z + β + (z + c+)

√

(z + c−)(1 − z) cos(
6θ

N
)], (3)

where we have de�ned

λ = ∆(4Ua + Ub + Uc + 2Uab − 2Uac − Ubc),

α = ∆[4(c+ + 1)Ua + (c− + 1)Ub + (c+ + c− + 2)Uab − (1 + c+)Uac − (1 + c−)
Ubc

2

+
3

N
(2µa + µb − µc)],

β = ∆[4Uac
2
+ + Ubc

2
− + Uc + 2Uabc+c− + 2Uacc+ + Ubcc−

+
6

N
(2µac+ + µbc− + µc)],

with

c− = 1 − 2k, c+ = 1 + k, ∆ =
1

4Ω
,

k =
J

N
, k ∈ [−2, 1].

We now regard (3) as a 
lassi
al Hamiltonian and investigate the �xed points of the

system. The �rst step is to �nd the Hamilton's equations of motion whi
h yields

dz

dt
=

∂H

∂θ
= −4ΩN

6
(z + c+)

√

(z + c−)(1 − z) sin

(

6θ

N

)

,

dθ

dt
= −∂H

∂z
=

4ΩN2

36
[2λz + 2(α − λ) (4)

+
2(z + c−)(1 − z) + (z + c+)(1 − z) − (z + c+)(z + c−)

2
√

(z + c−)(1 − z)
cos

(

6θ

N

)

].
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The �xed points of the system are determined by the 
ondition

∂H

∂θ
=

∂H

∂z
= 0. (5)

Due to periodi
ity of the solutions, below we restri
t to θ ∈ [0, Nπ/3]. It is 
onvenient

to de�ne the fun
tions:

f(z) = λz + α − λ,

g(z) = −2(1 − z)(z + c−) + (1 − z)(z + c+) − (z + c+)(z + c−)

4
√

(1 − z)(z + c−)
.

Note that the domain of g(z) is z ∈ [−1, 1) if k ∈ [−2, 0] and z ∈ (2k − 1, 1) if k ∈ (0, 1).
We observe that the fra
tional atomi
 imbalan
e k plays an important role in the

behaviour of the g(z) fun
tion. For k ≤ 0, g(z) is divergent only at z = 1, while for the

ase of k > 0, g(z) is divergent at z = 2k − 1 and z = 1. Sin
e k a�e
ts the domain and

the shape of the fun
tion g(z), this property will a�e
t the type of solutions of (5). In

Fig. 1 we illustrate the behaviour of the fun
tion g(z) for di�erent values of k. It is, in

fa
t, ne
essary to treat the 
ases of k < 0, k = 0 and k > 0 separately.

-1 -0.5 0 0.5 1
 z

-4

-2

0

2

4

 g
(z

)

 k = -1
 k = 0
 k = 0.5

Figure 1: (Color online) The behaviour of the fun
tion g(z) for three di�erent values of
k.

3.1 Negative 
ase : −2 ≤ k < 0

Here the domain of g(z) is z ∈ [−1, 1) and g(z) is divergent at z = 1, but �nite at z = −1.
This leads to the following 
lassi�
ation for the solutions of (5):

• θ = 0 and z is a solution of
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f(z) = g(z), (6)

whi
h 
an admit zero, one or two solutions.

• θ = Nπ/6 and z is a solution of

f(z) = −g(z), (7)

whi
h 
an admit zero, one or two solutions.

• z = −c+, whi
h vanishes the �rst equation of (4) and redu
es the se
ond eq. of (4)

to the expression

λ =
α

k + 2
+

√

−3k(k + 2)

2(k + 2)
cos(

6θ

N
), (8)

su
h that θ is a solution of

cos(
6θ

N
) = −2

√

−3k(k + 2)

3k

(

λ − α

k + 2

)

, (9)

for whi
h there are two solutions for |2
√

−3k(k+2)

3k

(

λ − α
k+2

)

| < 1.

3.2 Zero 
ase: k = 0

Now we 
onsider the 
ase k = 0, where the domain of g(z) is z ∈ (−1, 1) and g(z) is

divergent at z = 1, but �nite at z = −1, similar to the previous 
ase. This leads to the

following 
lassi�
ation for the general problem:

• θ = 0 and z is a solution of

f(z) = g(z), (10)

whi
h 
an admit zero, one or two solutions.

• θ = Nπ/6 and z is a solution of

f(z) = −g(z), (11)

whi
h 
an admit zero, one or two solutions.

• z = −1, whi
h vanishes the �rst eq. of (4) and redu
es the se
ond eq. of (4) to the

following linear equation between the 
oupling parameters

λ =
α

2
, (12)

whi
h 
an admit just one solution. This result is 
ompatible with that obtained in

the previous 
ase by taking the limit k → 0 in eq. (8)

6
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3.3 Positive 
ase: 0 < k ≤ 1

In this 
ase the domain of g(z) is z ∈ (2k − 1, 1) and g(z) is divergent at both extremes

of the interval, z = 2k− 1 and z = 1. Now, a di�erent s
enario emerges, 
ompared to the

previous two 
ases. This leads to the following 
lassi�
ation for the general problem:

• θ = 0 and z is a solution of

f(z) = g(z), (13)

whi
h 
an admit one, two or three solutions.

• θ = Nπ/6 and z is a solution of

f(z) = −g(z), (14)

whi
h 
an admit one, two or three solutions.

We 
an 
olle
t all di�erent types of solutions of eq. (5) in a parameter diagram,

dividing the parameter spa
e into di�erent regions, for ea
h 
ase of k dis
ussed above.

For example, for the 
ase of k positive, to 
onstru
t this diagram, we observe that the

boundaries between ea
h regions o

ur when f is the tangent line to ±g; i. e. for values
of λ and α su
h that

λ = ±dg

dz
|z0

,

f(z0) = ±g(z0),

for some z0. This requirement determines the boundaries in the parameter spa
e, whi
h

are depi
ted in Fig. 2(
) for k = 0.5.

As in the 
ase of k positive, we 
an determine the region boundaries in the parameter

spa
e for the other two 
ases. However, be
ause of the existen
e of solutions of the form

given by (8), whi
h do not have an analogue for positive k, we see the appearan
e of

new boundaries given by the 
onditions λ = (α ∓ g(−k − 1))/(k + 2) for negative k and

λ = α/2 for k = 0. The boundaries in parameter spa
e are illustrated in Fig. 2(a) and

Fig. 2(b) for k = −1 and k = 0, respe
tively. Noti
e that the two additional boundaries,

whi
h delimit region C, for k = −1 are redu
ed to a unique boundary for k = 0, whi
h is

not present for k = 0.5. Therefore, we have a di�erent s
enario for the parameter spa
e

diagram, depending if the fra
tional atomi
 imbalan
e k is negative, zero or positive, as

illustrated in Fig. 2. Basi
ally, we 
an summarize the typi
al behaviour of the parameter

spa
e diagram as follows: when k is negative, the parameter diagram is divided in �ve

regions: in region A there is no solution for z when θ = 0 and one solution for z when

θ = Nπ/6. In region B there are two solutions for z when θ = 0 and one solution for

z when θ = Nπ/6. In region C there is one solution for z when θ = 0, one solution for

7
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α

-5

-2.5
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2.5

5
λ

k = -1

(a)

A

B

C

D

E

-5 -2.5 0 2.5 5
α

-5

-2.5

0

2.5

5

λ

k = 0

A
B

D
E

(b)

-5 -2.5 0 2.5 5
α

-5

-2.5

0

2.5

5

λ

k= 0.5

(c)

I

II

III

Figure 2: (Color online) Parameter spa
e diagram identifying the di�erent types of solu-

tion for eq.(5) for di�erent values of k = −1; 0; 0.5. We observe (a) �ve distin
t regions

for the negative 
ase; (b) four distin
t regions for k = 0; (
) three distin
t regions for the
positive 
ase. In (a) the boundaries are given by λ = (α ∓ g(−k − 1))/(k + 2) while in
(b) it is given by λ = α/2.

z when θ = Nπ/6 and two solutions for θ when z = −k − 1. In region D there is one

solution for z when θ = 0 and two solutions for z when θ = Nπ/6. In region E there

is one solution for z when θ = 0 and no solution for z when θ = Nπ/6. For the 
ase

k = 0, region C disappears and the phase diagram is left with the four regions A, B, D,

E dis
ussed before. When k is positive the diagram is divided in three regions: in region

I there is one solution for z when θ = 0 and one solution for z when θ = Nπ/6. In region

II there are three solutions for z when θ = 0 and one solution for z when θ = Nπ/6. In
region III there is one solution for z when θ = 0 and three solutions for z when θ = Nπ/6.
It is interesting to mention that the fra
tional atomi
 imbalan
e also plays an important

role in hetero-diatomi
 mole
ular Bose-Einstein 
ondensates [27�29℄.

To help visualize the 
lassi
al dynami
s, it is useful to plot the level 
urves of the

Hamiltonian (3). Sin
e the �xed points 
hange the topology of the level 
urves, qualitative

di�eren
es 
an be observed between the di�erent regions. The results are depi
ted in Fig.

3 for k = −1 (on the left), k = 0 (in the middle) and k = 0.5 (on the right). For 
larity,

we use 
onvenient intervals for θ and z.

In Fig. 3(a) we show the level 
urves of the Hamiltonian (3) for k = −1, illustrating
the typi
al behaviour for regions A, B, C and E (from the top to the bottom). In region A

there are lo
al minima at 6θ/N = ±π. Besides the minima at 6θ/N = ±π, two additional
�xed points (a maximum and a saddle point) are apparent in region B o

urring at θ = 0.
In region C there are minima at 6θ/N = ±π and for θ = 0 just one �xed point, a

maximum. There are also saddle points when z = 0. In region E just one �xed point, a

maximum, o

urs for θ = 0.
In Fig. 3(b) we show the level 
urves for k = 0 for the same regions illustrated in the

previous 
ase, ex
ept that now instead of region C there is just one straight line separating

regions B and D. The behaviour here is analogous to the previous 
ase of negative k, with

8
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the emergen
e of a maximum (minimum) when passing from region A to B (E to C).

In Fig. 3(
) we present the level 
urves of the Hamiltonian (3) for k = 0.5, illustrating
the behaviour of regions I, II, III and I (from the top to the bottom). In region I there is

a maximal point at θ = 0 and a minima at 6θ/N = ±π. Two additional �xed points, a

saddle and a maximum o

ur, in region II at θ = 0, while two additional �xed points, a

saddle and a minimum, o

ur in region III at 6θ/N = ±π 
ompared to region I.

We observe that the pattern of the level 
urves is distin
t for the 
ases of k negative

and zero 
ompared to the positive 
ase.

In the following se
tions we will 
ondu
t an analysis of the quantum Hamiltonian.

We will fo
us our attention on the 
ase λ = 0, in this way the model has one e�e
tive

parameter, α. In parti
ular we will establish that the bifur
ation o

urring at (α, λ) =
(−g(−k − 1), 0) for the negative 
ase and (α, λ) = (0.5, 0) for k = 0 
an be seen to

in�uen
e the ground state properties of the quantum system.

4 Quantum analysis

We now turn our attention to a quantum treatment of the model, to investigate the nature

of the additional threshold 
ouplings for the 
ases where the fra
tional atomi
 imbalan
e

k is negative and zero. In parti
ular we analyze the Hamiltonian in the no s
attering limit

where Uij = 0 for all i, j = a, b, c,

H = µaNa + µbNb + µcNc + Ω(a†a†b†c + c†baa). (15)

This simpli�es substantially the Hamiltonian, however it remains su�
iently non triv-

ial to enable us to gain an understanding of the quantum behaviour through the quantum

dynami
s, ground-state expe
tation value, gap and �delity. The no s
attering limit 
orre-

sponds to the 
oupling λ = 0 in the 
lassi
al analysis of se
tion 3. With referen
e to Fig.

2 there are two threshold 
ouplings when k is negative and three threshold 
ouplings for

k = 0. For the 
ase of k negative, one o

urs at (α, λ) = (−g(−k − 1), 0), signifying the

bifur
ation of the global minimum of the Hamiltonian, while the other o

urs at (α, λ) =
(g(−k−1), 0), signifying the bifur
ation of the global maximum. For the spe
i�
 example

of k = −1, these thresholds are (α, λ) = (0.866, 0) and (α, λ) = (−0.866, 0), respe
tively.
For the 
ase k = 0, there are three bifur
ations at (α, λ) = (−0.5, 0), (0, 0), (0.5, 0). The

ase (α, λ) = (−0.5, 0) signifying the bifur
ation of the global maximum, (α, λ) = (0.5, 0)
signifying the bifur
ation of the global minimum while (α, λ) = (0, 0) signifying the bifur-

ation of the saddle point. In 
ontrast, there are no bifur
ations along the line λ = 0 for

the positive 
ase. We fo
us our attention to the 
oupling (α, λ) = (0.866, 0) for k = −1
and (α, λ) = (0.5, 0) for k = 0, as in these 
ases the bifur
ation of the �xed point in phase

spa
e is asso
iated with the ground state of the quantum system.

4.1 Quantum dynami
s

In general the time evolution of any state is given by |Ψ(t)〉 = U(t)|φ〉, where U(t) is the
temporal operator U(t) =

∑M

m=0 |m〉〈m| exp(−iEmt), |m〉 is an eigenstate with energy

Em and |φ〉 represents the initial state with N = Na +Nb +3Nc. We adopt the method of

9
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dire
tly diagonalizing the Hamiltonian (15) as done in [31,32℄ and 
ompute the expe
tation

value of z(t) through.

〈z(t)〉 =
1

N
〈Ψ(t)|Na + Nb − 3Nc|Ψ(t)〉. (16)

In our analysis, for �xed total number of atoms N and �xed atomi
 imbalan
e J ,
we will use the initial state 
on�guration |0,−J/2, (2N + J)/6〉 for the 
ases where k is

negative and zero and |J, 0, (N − J)/3〉 for the 
ase where k is positive. We therefore


ompare the three 
ases of the quantum dynami
s, with fra
tional atomi
 imbalan
e

negative, zero and positive.

Results of the expe
tation value for z are shown in Fig. 4 for the 
ases of k = −1, 0
and 0.5. We are using N = 900 and J = −900; 0; 450 for k = −1; 0; 0.5, respe
tively. We

�x the parameter Ω = 1 and use µc as the variable 
oupling parameter. In terms of the


lassi
al variables, this 
orresponds to vary the parameter α. The qualitative di�eren
es
are quite apparent. In the 
ase of k = −1, Fig. 4(a), we �nd that for α < 0.866 there are

irregular os
illations in z. Similar behaviour o

urs for α < 0.5 for k = 0, Fig. 4(b). As
the 
oupling parameter α is in
reased a
ross the threshold value at α = 0.866, for k = −1
and α = 0.5 for k = 0, the transition to lo
alized os
illations is signi�
ant in 
ases (a)

and (b). By 
omparison the dynami
s in Fig. 4(
) for k = 0.5 show a 
ollapse and revival

of os
illations.

4.2 Ground state expe
tation values

Now using the equation (16), we 
ompute the normalized ground-state expe
tation value

3〈Nc〉/N for the quantum system as the 
oupling is varied. Results are shown in Fig. 5.

In general, agreement with the 
lassi
al result is found: As the threshold 
oupling

α = 0.866 (for k = −1) and α = 0.5 (for k = 0) is 
rossed, the maximal possible number

of mole
ules that 
an be formed for ea
h 
ase (100% for k = −1 and 50% for k = 0) is
rea
hed. In both 
ases, there is an abrupt 
hange in the expe
tation value 3〈Nc〉/N at the

threshold point. However, for k = 0, the expe
tation value 3〈Nc〉/N does not exhibit any

sudden 
hange, indi
ative of the fa
t that there is no boundary in Fig. 2(
). Therefore,

qualitative 
hanges are observed between the 
ases of k negative and zero and the 
ase of

k positive.

4.3 Quantum phase transitions

In order to gain a better insight into the e�e
t of the threshold 
ouplings for the quantum

system, in our �nal analysis we investigate the existen
e of quantum phase transitions in

our model (15).

A Quantum Phase Transition (QPT) is usually de�ned as a phase transition in the

ground-state of the system under the variation of some parameter. Basi
ally, there is
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a sudden hange in the stru
ture of the ground state at the QPT, and the properties

su
h as entanglement, 
orrelations, et
 re�e
t this sudden 
hange [30℄. There are di�erent

methods to determine a QPT. In parti
ular, we will study the behaviour of the energy gap

and �delity of the system to identify a QPT. Here we mention that a QPT is rigorously

de�ned in the thermodynami
al limit N → ∞. For large but �nite N the system does

display an in
reasing sharp distin
tion between ground state regions, 
alled Quantum Pre-

Phase Transitions (QPPT). The o

urren
e of a QPPT in a �nite system is a pre
ursor

for a QPT in the thermodynami
 limit. Let us now study the QPPT of the Hamiltonian

(15).

4.3.1 Energy gap

One possibility to identify a QPPT is through the energy gap, whi
h is de�ned as the

di�eren
e between the �rst ex
ited state and the ground-state of the system.

∆E = E1 − E0.

In Fig. 6 we plot the gap against the 
oupling parameter α for the 
ases of k = −1, 0
and 0.5 using Ω = 1 and di�erent values of N . In all 
ases the energy gap exhibits a

minimum, whi
h is mu
h more pronoun
ed in the 
ases of k negative and zero 
ompared

to the 
ase where k is positive. We observe that as long as N in
reases, the point where

the gap tends to vanish 
orresponds to α = 0.866 for k = −1 (Fig. 6(a)) and α = 0.5 for

k = 0 (Fig. 6(b)), in agreement with the 
lassi
al analysis. In 
ontrast, when k is positive

there is no abrupt variation of the energy gap as shown in Fig. 6(
) and QPPT are not

expe
ted.

4.3.2 Fidelity

Another possibility to investigate the QPPT is through the behaviour of the �delity,

whi
h is a 
on
ept widely used in the Quantum Information Theory [33�35℄. The �delity

is basi
ally de�ned as the modulus of the wavefun
tion overlap between two quantum

states. Assuming the ground state of the system is non-degenerate, let Ψ(α) denote the
unique normalized ground state. For �xed small ∆ we de�ne the fun
tion �delity or

ground-state wavefun
tion overlap Fid∆(α) by

Fid∆(α) = |〈Ψ(α(1 − ∆))|Ψ(α(1 + ∆))〉|,

whi
h is symmetri
 in ∆, bounded between 0 and 1 and satis�es Fid0(α) = 1. For systems

whi
h exhibit a quantum phase transition in the thermodynami
 limit, the wavefun
tion

overlaps between states in di�erent phases go to zero in this limit. The o

urren
e of a

minimum in the ground-state wavefun
tion overlap in a �nite system is then a pre
ursor

for a quantum phase transition in the thermodynami
 limit. Thus for �nite systems we

identify quantum phase pre-transitions at a 
oupling α for whi
h the �delity is (lo
ally)

minimal. Fig 7 shows the behaviour of the �delity for (a) k = −1; (b) k = 0; (
) k = 0.5
for �xed N(∆) and di�erent values of ∆(N) on the top (bottom). It is 
lear that the
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minimum value of Fid∆(α), whi
h determines the quantum phase pre-transition, tends

to o

ur at α ≈ 0.86 for k = −1 and α ≈ 0.5 for k = 0. The distin
tion between

the predi
ted threshold 
oupling and the observed pre-transition 
oupling is that the

pre-transition 
oupling also o

urs for k positive, although for �xed N the minimum of

Fid∆(α) is substantially more pronoun
ed for k negative and zero 
ompared to k positive.

In all instan
es the value of minimum de
reases with in
reasing N . We remark that the

value of α at whi
h the minimum o

urs is independent of ∆, as shown in Fig.7 (on the

top). In our previous 
lassi
al analysis qualitative di�eren
es are only found pre
isely

when k is negative or zero. Here it is 
lear that the distinguishability of two phases is

more reliable also for k negative or zero. We then interpret these results as the emergen
e

of quantum phase boundaries for k negative or zero.

5 Con
lusion

We have 
onsidered a model des
ribing a mixture of two spe
ies of atoms in di�erent

proportions whi
h 
an 
ombine to form a bound mole
ular state at zero temperature.

This hetero-triatomi
 mole
ular Bose-Einstein 
ondensate model has been investigated in

detail through a 
lassi
al and a quantum analysis.

We have found that the fra
tional atomi
 population imbalan
e k, an extra 
ontrol

"knob" 
hara
teristi
 to heteronu
lear models, plays an important role in the determi-

nation of the phase boundaries in the diagram of parameters in the 
lassi
al analysis.

This property also holds at a quantum level by inspe
ting the ground-state expe
tation

values and the 
hara
ter of the quantum dynami
s of the model. We have also looked

for the quantum phase pre-transitions in our system and shown that the quantities en-

ergy gap and ground state �delity are suited for revealing QPPT and pinning down the


riti
al(bifur
ation) points.
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Figure 3: Level 
urves for the Hamiltonian (3), where the dark regions indi-


ate lower values than the light regions. Here we are using for: (a) k = −1
on the left (λ, α) = (0;−1.0), (5; 2.5), (0, 0) and (0, 1.5); (b) k = 0 in the mid-

dle (λ, α) = (0,−1), (2.5, 2.5), (0; 0) and (0, 1.5);(
) k = 0.5 on the right (λ, α) =
(0;−1.5), (5, 2.5), (−5,−2.5) and (0, 1.5).
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Figure 4: Time evolution of the expe
tation value of z for the Hamiltonian (15) with

N = 900, for (a) k = −1 and initial state |0, 450, 150〉. We are using natural units. The

os
illations are largely irregular with signi�
antly de
reasing amplitude as the point at α =
0.866 is 
rossed. This point 
orresponds to the boundary at (α, λ) = (0.866, 0) between
regions C and E as shown in Fig. 2(a); (b) k = 0 and initial state |0, 0, 300〉. A similar

behaviour o

urs as the point at α = 0.5 is 
rossed. This point 
orrespond to the boundary
at (α, λ) = (0.5, 0) as shown in Fig 2(b); (
) k = 0.5 with initial state |450, 0, 150〉. The
os
illations display 
ollapse and revival behaviour with smoothly de
reasing amplitude.

Here there is no abrupt behaviour, indi
ative of the fa
t there is no boundary at λ = 0 in

Fig. 2(
).
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Figure 5: (Color online) Normalized ground-state expe
tation value of the mole
ular

number operator 〈Nc〉 versus the 
oupling parameter α for the three di�erent 
ases k = −1,
0 and 0, 5. Here we are using Ω = 1 and N = 900. For the 
ases k = −1 and k = 0 there

is an abrupt 
hange in the expe
tation value 3〈Nc〉/N as the threshold 
oupling α = 0.866
(for k = −1) and α = 0.5 (for k = 0) is rea
hed. In 
ontrast, for k = 0.5, the expe
tation
value 3〈Nc〉/N in
reases smoothly with α, not exhibiting any abrupt behaviour.
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Figure 6: (Color online) Energy gap between the �rst ex
ited state and the ground state

as a fun
tion of α for (a)k = −1; (b)k = 0; (
)k = 0.5 and di�erent values of N . We are

using Ω = 1 and natural units.
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Figure 7: (Color online) Ground-state wavefun
tion overlaps as a fun
tion of the 
oupling

parameter α for (a)k = −1; (b)k = 0; (
)k = 0.5 and Ω = 1. On the top we are using

N = 900 and di�erent values of ∆. In the bottom we are using ∆ = 0.01 and di�erent

values of N . In all 
ases the �delity exhibits a minimum, whi
h is substantially more

pronoun
ed for k = −1 and k = 0, 
ompared to k = 0.5.
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