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Abstract

(Super)conformal mechanics in one dimension is induced by parabolic or hyper-
bolic/trigonometric transformations, either homogeneous (for a scaling dimension
A) or inhomogeneous (at A = 0, with p an inhomogeneity parameter). Four types
of inequivalent (super)conformal actions are thus obtained. With the exclusion of
the homogeneous parabolic case, dimensional constants are present.

Both the inhomogeneity and the insertion of A generalize the construction of
Papadopoulos [CQG 30 (2013) 075018; arXiv:1210.1719].

Inhomogeneous D-module reps are presented for the d = 1 superconformal al-
gebras osp(1|2), sl(2]1), B(1,1) and A(1,1). For centerless superVirasoro algebras
D-module reps are presented (in the homogeneous case for N' = 1,2,3,4; in the
inhomogeneous case for N' = 1,2, 3).

The four types of d = 1 superconformal actions are derived for N' = 1,2, 4 sys-
tems. When N = 4, the homogeneously-induced actions are D(2, 1; a)-invariant («
is critically linked to A); the inhomogeneously-induced actions are A(1,1)-invariant.

In d = 2, for a single bosonic field, the homogeneous transformations induce a
conformally invariant power-law action, while the inhomogeneous transformations
induce the conformally invariant Liouville action.
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1 Introduction

In this paper we prove the existence of four types of conformally invariant actions for
one-dimensional mechanical systems. In [1] Papadopoulos realized that under hyper-
bolic/trigonometric transformations of the fields, extra potential terms entered the confor-
mal Lagrangians (these extra potential terms are not present when the standard, parabolic,
realization of the conformal transformations is considered).

We generalize here the results of [1] in two distinct ways. At first we point out that
a scaling dimension \ is associated with the parabolic and hyperbolic/trigonometric D-
module reps of the conformal algebra sl(2). In [1] A was only taken at the given fixed
value which produces constant kinetic terms.

The scaling parameter \, however, cannot be so easily dismissed. In the supersym-
metric generalizations (starting from the N' = 4 supersymmetric extension) it acquires a
critical property. Depending on the given supermultiplet, see e.g. formula (36), it specifies
under which of the exceptional D(2,1;«) (parametrized by «) supersymmetry algebras,
the system under consideration is superconformally invariant.

Our second extension concerns the generalization to the inhomogeneous parabolic and
hyperbolic/trigonometric conformal transformations of the fields (in [1] only homogeneous
transformations were considered).

We point out, see Appendix A, the existence of two inequivalent classes of one-
dimensional conformal transformations (and their supersymmetric extensions), the ho-
mogeneous ones, depending on the critical scaling A, and the inhomogeneous ones, which
are parametrized by the constant p.

Hyperbolic versus trigonometric transformations are mutually recovered via an ana-
lytic continuation. The passage from parabolic to hyperbolic transformations, see e.g.
formula (12), requires a singular change of variable. Under this change of variable the
properties of their respective D-module reps (the scaling A or, in the inhomogeneous case,
the parameter p) are easily recovered. The singularity of the change of variable is, on
the other hand, responsible for the appearance in the Lagrangians of the extra potential
terms that we mentioned before.

On algebraic grounds the crucial difference between the hyperbolic and the parabolic
sl(2) transformations is the following. In the parabolic case the operator proportional to
a time-derivative (the “Hamiltonian”) is given by the (positive or negative) sl(2) root,
while in the hyperbolic case this Hamiltonian operator is associated with the si(2) Cartan
generator.

Therefore we end up, for one-dimensional conformal systems and their supersymmet-
ric extensions, with four types of D-module reps and their associated (super)conformally
invariant actions, namely the homogeneous parabolic, inhomogeneous parabolic, homoge-
neous hyperbolic/trigonometric and inhomogeneous hyperbolic/trigonometric cases.

Only for the very special homogeneous parabolic case the conformally invariant actions
are based on power-law and contain no dimensional parameter. In all remaining cases we
have at disposal at least one dimensional constant to play with.

In the following we present all four types of (super)conformal actions in various ex-
emplifying d = 1 situations: the sl(2)-invariant actions of a single boson, the osp(1]2)-
invariant (sl(2|1)-invariant) actions of an N’ =1 (N = 2) supermultiplet. For a given set
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of N' = 4 supermultiplets, the actions are D(2,1;a)-invariant in the two homogeneous
cases and A(1, 1)-invariant in the two inhomogeneous cases.

The construction is also applied, in the Lagrangian setting, to (super)conformal actions
in d = 2 dimensions. The invariance in this case is under a single copy (for the chiral
models) or the direct sum of two copies (the full conformal invariance) of the Witt algebra
(the centerless Virasoro algebra) and its supersymmetric extensions.

Contrary to the d = 1 case, in d = 2, hyperbolic and parabolic active transformations
of the field(s) produce the same conformally invariant output. The difference between
homogeneous versus inhomogeneous transformations, on the other hand, is retained. As
an example, the inhomogeneous transformations applied on a single boson induce, see
(32), the conformally invariant Liouville action, while the homogeneous transformations
induce a power-law conformally invariant action, see formula (31).

From the point of view of representation theory we extend here in two directions the
results of [2] and [3] on D-module reps of finite d = 1 superconformal algebras. We enlarge
the D-module reps of the osp(1|2), si(2|1), B(1,1) = osp(3|2) and A(1,1) = sl(2]2)/Z
superalgebras to the class of inhomogeneous (p-dependent) D-module reps, see (42).

We further construct the D-module reps of the N/ = 1,2, 3,4 centerless superVirasoro
algebras, both in the homogeneous case (they are summarized in (43)) and, for N = 1,2, 3,
inhomogeneous case (these results are summarized in (44)). The explicit construction of
these D-module reps is presented in Appendix B.

Conformal mechanics based on the s/(2) algebra has been investigated since the work
of de Alfaro, Fubini and Furlan [4]. Models of superconformal mechanics have been pre-
sented in [5]-[13] (for an updated review on superconformal mechanics and a list of recent
references see, e.g., [14]). There are several reasons to study one-dimensional supercon-
formal mechanics (more on that in the Conclusions). Here it is sufficient to mention
the applications to test particles moving in the proximity of the horizon of certain black
holes, see [12]. In [2] and [3] it was advocated the point of view that superconformal
mechanics, in the Lagrangian setting, could be derived from the D-module reps of su-
perconformal algebras. In most of the papers in the literature and all works cited in the
[14] review, the superconformal actions are based on power laws, being dependent only
on dimensionless constants (apart the optional addition of oscillatorial terms, what is
known as the DFF trick [4]). This is what to be expected for the homogeneous parabolic
D-module reps. The possibilities offered by the three remaining types of D-module reps
(presenting dimensional constants), on the other hand, greatly enlarge the class of avail-
able superconformal systems. One should confront, for instance, the power law N = 4
superconformal systems with A(1,1) or D(2,1;«) invariance investigated in [15, 16] and
[17]-[22], respectively, with the A/ = 4 actions presented in Section 9.

The scheme of the paper is as follows: in Section 2 we introduce the homogeneous
parabolic and hyperbolic D-module reps of the Witt algebra and its si(2) subalgebra.
The inhomogeneous D-module reps of the si(2) and Witt algebras are discussed in Section
3. In Section 4 we derive the different types of conformally invariant actions for a single
boson. In Section 5 we extend the analysis to the bosonic, conformally invariant actions
in d = 2 dimensions. In Section 6 we collect the main properties of the finite d = 1
superconformal algebras (together with their known D-module reps) and of the N/ =
1,2,3,4 centerless superVirasoro algebras. The new results on D-module reps for the
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finite d = 1 superconformal algebras and for the centerless superVirasoro algebras are
summarized in Section 7. Different types of N' = 1,2 superconformal actions in d = 1
and supersymmetric chiral actions in d = 2 are given in Section 8. In Section 9 we
present the four types of N = 4 superconformally invariant actions associated with the
class of (1,4, 3) supermultiplets. In the Conclusions we point out the possible applications
of our results and the future lines of investigations. The paper is complemented by two
Appendices. A discussion about homogeneous versus inhomogeneous D-module reps is
given in Appendix A. In Appendix B we present the explicit construction of the new
supersymmetric D-module reps discussed in the main text.

2 The bosonic case: homogeneous D-module reps of
the sl(2) and Witt algebras

The sl(2) algebra is the conformal algebra in d = 1 dimensions. Its three generators
D, H, K satisfy the commutation relations

[D,H] = H,
[D,K] = —K,
[H,K] = 2D. (1)

The Cartan generator D is the dilatation operator.
A (parabolic) D-module representation of (1) is given by the differential operators
(depending on a single variable ¢ which, in application to physics, plays the role of time)

H = at7
D = —td, -\
K = —29,— 2\t 2)

The constant A is the scaling parameter. The above D-module rep is non-critical because
the commutators (1) close for any value of \.

The Virasoro algebra Vir is the central extension of the algebra of one-dimensional
diffeomorphisms (known as “Witt algebra”). Its infinite generators L,, (n € Z) satisfy the
commutation relations

C
[Lm7 Ln] = (m — n)Lern -+ Em(m2 — 1)5m+n,0. (3)

The Virasoro algebra contains sl(2) as a subalgebra. It is obtained by restricting
n==+1,0.
In the centerless case the Witt algebra admits a parabolic D-module rep. Indeed

L = " tg — A" (4)
give the commutators (3) with ¢ = 0 provided that the A,,’s satisfy the set of equations

mAm —nA, = (M —n)Anin. (5)
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A solution is recovered for

with A, 4 arbitrary constants.
For the sl(2) generators we obtain, in particular,

ar. Y ~ 1
L = —a+ (=),
IF" = -t -3,
L = 28, — (A + AL, (7)

The special value 5 = \ allows us to identify, for A = X,

" = _h,
e = p,
" = K. (8)

At this special value of 4 one of the root generators of sl(2) is proportional to a time-
derivative and, in physics, can be identified with the Hamiltonian.
The constant 7 is arbitrary and can be changed via a similarity transformation. Indeed,
for f(t) = sgn(t)¥in|t|, we have
e Lf = el [Prmem = [P 417,
Therefore, 4 +— 5 — 4. 3
For the special choice 4 = A, the parabolic D-module rep of the Witt algebra is

LPor — g — (n 4 )M (9)

By using hyperbolic/trigonometric functions, a hyperbolic/trigonometric D-module rep
of the Witt algebra can be given. In the hyperbolic case the ¢ = 0 commutators (3) are
satisfied for

L = —ZemT(, 4 N,), (10)

if \, = n\ +7. The dimensional constant y has been introduced here for dimensional
reasons. Without loss of generality we can fix it at the u = 1 value. In most of the cases,
nevertheless, it is convenient to explicitly keep it in the equations in order to facilitate a
dimensional analysis.

The sl(2) generators read now

1 _
Ly = —27(0r +3+7),
1
Ly = —=(0: +7),
0 u< )
1 —
LM = —ZemhT(9 — X +7). (11)
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In the hyperbolic case the generator proportional to the time-derivative (the “Hamilto-
nian”) coincides, for 7 = 0, with the s/(2) Cartan generator Li¥"".
Just like the parabolic case, the constant 7 can be shifted by a similarity transformation.

At this point it is important to stress that the parabolic and the hyperbolic D-module
reps of the Witt algebras are singled out, among the most general class of D-module
reps, by the aforementioned very special property. Namely, that for a specific value of
the constant parameter (either 4 or 7), one of the si(2) generators is proportional to the
Hamiltonian. The mathematical difference between the parabolic and the hyperbolic D-
module reps can be stated as follows. In the parabolic case, the Hamiltonian is identified
with the (positive or negative) sl(2) root generator while, in the hyperbolic case, the
Hamiltonian is identified with the sl(2) Cartan generator. This difference proves to be
crucial in the construction of conformally invariant actions.

From an algebraic point of view the hyperbolic D-module rep can be recovered from
the parabolic D-module rep via a singular transformation. Let us call, for simplicity,
L, = L™ when we fix the values y = 1 and 5 = 0. Therefore L, = —e" (9, + n)). For
t > 0 the change of variable

t— 7(t) =In(t) (12)
allows to recover the parabolic rep L, = —t"t19, — nAt" at the specific values, for its
constants, A = A and 7 = 0.

The
A= A (13)

relation is of particular importance. Extended to superconformal algebras with N' > 4
(the ones, as discussed in the Introduction, where the criticality of the scale parameter
plays a role), it implies that the same critical scaling is recovered in both parabolic and
hyperbolic cases (we will see this property at work in the following of the paper).

The singularity of the transformation connecting parabolic and hyperbolic D-module
reps has the consequence, for the respective conformal invariant actions, that they are
not (at least trivially) related. With respect to the parabolic case, in the hyperbolic case
extra potential terms appear due to the presence of the dimensional constant p (and due
to the different identification of the Hamiltonian operator with the given sl(2) generator).

The connection of the trigonometric case (that we do not need here to write down
explicitly) with the hyperbolic case is simply given by an analytic continuation. One can
perform a Wick rotation of the time coordinate 7 by identifying a new periodic variable
0 (1 = ). Alternatively, the analytic continuation can also be obtained by performing
a Wick rotation of the dimensional constant p, mapping p +— iu. It will be shown in
the following that the extra potential terms entering the conformally invariant actions
in the hyperbolic case are not bounded below, due to a “wrong” sign. Since they are
proportional to p?, the correct sign can be recovered through the latter Wick rotation.
The conformally invariant actions based on the trigonometric D-module transformations
have therefore well-defined, bounded from below, potentials.

As recalled in [1], the group of diffeomorphisms Dif f(R) of the real line induced by
the hyperbolic D-module rep is promoted, in the trigonometric case, to the group of
diffeomorphisms Dif f(S') of the S! circle.
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3 Inhomogeneous D-module reps of the si(2) and Witt
algebras

Besides distinguishing Witt algebra’s D-module reps into the two classes of parabolic ver-
sus hyperbolic/trigonometric representations, another discrimination can be introduced.
It concerns the homogeneous versus the inhomogeneous representations.

Let ¢(t) be a time-dependent field. In the homogeneous case, the action of the Witt
generators is written down as

L,(¢) = anp+ bup. (14)

In the inhomogeneous case the generators act as

Ly(p) = anp+dn. (15)

In both cases the closure of the ¢ = 0 (3) commutators is guaranteed, provided that the
coefficients a,, b, and a,,d, are fixed to proper values (the coefficients b,,d,, coincide;
for clarity reasons in application to conformal actions, it will be however convenient to
denote with different letters their respective normalization constants).

The parabolic subcase requires

ap = —t"" by = Nan,  dyp = pan. (16)

The hyperbolic subcase requires
ap = ——€"™", b, = Ay, dy, = Py, (17)

Taking into account the discussion in Appendix A, the overall result is the existence
of four types of D-module representations of the Witt algebra, labelled as follows:

I (Hom. par.) - the homogeneous parabolic rep,
II (Inh. par.) - the inhomogeneous parabolic rep,
III (Hom. hyp.) - the homogeneous hyperbolic rep,
IV (Inh. hyp.) - the inhomogeneous hyperbolic rep.

Let [t] = [r] = —1 be the scaling dimension of the time coordinate(s) (therefore
[t = 1). Let us furthemore set the scaling dimension of the field ¢ being given by
[p] = s. o

For consistency, in the respective cases, the scaling dimensions of the A\, p, A, p pa-
rameters are

I:[\=0, I1:[p] =s, IIT: [\ =0, IV : [p] = s. (18)

For s # 0 the Hom. par. rep contains no dimensional parameter, while one dimensional
parameter (p) is found in the Inh. par. rep, one dimensional parameter (x) in the Hom.
hyp. rep and two dimensional parameters (u, p) in the Inh. hyp. rep.
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Similarly to the homogeneous case, the change of variable (12) allows to connect the
inhomogeneous parabolic and hyperbolic D-module reps. Under this transformation the
relation

(19)

™
Il
I

is verified.
Since no confusion will arise, in both parabolic and hyperbolic cases, we denote in the
following, for simplicity, the scaling parameter of the homogeneous D-module rep as “\”

(138

and the parameter of the inhomogeneous D-module rep as “p”.

4 Conformal actions in d =1

We are looking at first for conformally invariant actions depending on a single field ().
The Lagrangian has the form

L = g(p)*+hlp), (20)

where g(¢) is a (one-dimensional) metric and h(p) is a potential term. The conformal
invariance puts restrictions on both g and h.
We present here the general results for the four types of conformal transformations
(homogeneous/inhomogeneous and parabolic/hyperbolic) introduced in Sections 2 and 3.
In the homogeneous parabolic case, the invariance under the L,, transformations (14)
requires solving the system of equations

an[(1+2))g + Agow] = 0,
2Aganp + hypay, + N;") = 0,
Ahygin + N = 0, (21)

with a,, given in (16). The set of functions N (¢, t) has to be determined; it reflects the
arbitrariness of the invariance of the Lagrangian up to a total time-derivative.

The same system is derived in the homogeneous hyperbolic case with a,, given in (17).
In the hyperbolic case we have the relation

in, = n’ulan, (22)

which is not present in the parabolic case.
Under the inhomogeneous transformations (15) the system of equations

anlg + pge] = 0,
2pgay, + hpa, + N;") = 0,
phoin + N =0 (23)

is derived for both parabolic and hyperbolic cases; a, is given, respectively, by (16) and
(17).
Solving the above systems for all four cases is straightforward.
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In the Hom. par. case, for instance, the first set of equations in (21) gives for the
metric the solution g = C’lgo_(ltw (Cy is a normalization constant). The third set of (21)
equations allows to write N = —\h,pa, + M™ | where M ™ () are arbitrary functions
of ¢ which do not explicitly depend on the time coordinate t. By plugging this result into
the second set of equations, together with the (16) position for a,, we end up with the
following system: —2\(n + 1)nt" tge — " (1 — X)hy — M) + Mcf,n) = 0.

The vanishing of the term inside square brackets gives the solution h = ngﬁ (Cy is the
normalization constant). The first term in the left hand side is vanishing for n = 0, —1,
while it can be reabsorbed by a suitable choice of M™ () for n = 1.

Therefore, the (21) system of equations cannot be nontrivially solved, simultaneously,
for all n € Z, but at most for the sl(2) subalgebra.

Deriving the solution for the three remaining cases proceeds along similar lines. In the
two hyperbolic cases, the (22) relation for the a,’s induces an extra term in the potential,
proportional to the metric normalization constant C';, which is not present in the parabolic
cases.

The overall results can be summarized as follows. We obtain four d = 1 conformal
actions, invariant under different realizations of the sl(2) active transformations of the
single bosonic field ¢(t). Their respective Lagrangians are given by

I - Homogeneous parabolic case:

_(a+2))

L = Cip 3 %+ Capd. (24)

II - Inhomogeneous parabolic case:
L = Cie v92 + Cher®. (25)

11T - Homogeneous hyperbolic case:

(142X)

L = Cifp™ > @+ 2\ 3] + Copd. (26)

IV - Inhomogeneous hyperbolic case:
L = Cie #°[@% + p2p%] + Coer?. (27)

In order to have a dimensionless action S ([S] = 0), the scaling dimension of the La-
grangian is [£] = 1, if we assign the time coordinate to have scaling dimension —1. Taking

into account [u] = 1 and the relations (18), we end up with the following dimensional
analysis:

- in both homogeneous cases (I and II), [C] = [Cs] = 0, provided that [p] = A;

- in both inhomogeneous cases (I and V), [C1] = —1 — 2s, [Cs] =1, [¢] = [p] = s, with

s arbitrary.

The homogeneous parabolic case is the only one not containing dimensional constants
in the conformal action (in the Hom. hyp. case the constant p is present).

The C4,C5 constants are arbitrary. On the other hand, in the two hyperbolic cases,
extra terms for the potential appear with respect to the parabolic cases. Their normaliza-
tion constant (C?) is linked with the metric normalization constant. Since p? is positive,
these potential terms have a “wrong” sign and are not bounded below.
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A consistent action with a correct, bounded below, potential is obtained by allowing
it to be a complex variable and performing the u — u Wick rotation. As recalled in
Section 2, this is tantamount to pass from the hyperbolic to the trigonometric version of
the D-module representation. In the latter case, for consistency, the field ¢ as well needs
to be complexified. A simple inspection shows that conformal, sl(2)-invariant actions
based on the trigonometric D-module reps are given by

1 - Homogeneous trigonometric case:

(1+42X)

L = Cllol™ > ¢"¢ — 12| %) + Calo|3; (28)

11 - Inhomogeneous trigonometric case:

te* eto*

L = Cie 2 (9*p—pi°p?) + Coe 2,

(29)

In both cases the correct, bounded below potentials are obtained by choosing C > 0
and Cy < 0.

Our results should be compared with the ones derived by Papadopoulos in [1]. In that
paper only homogeneous transformations were considered. Furthermore, only constant
metrics were discussed. This amounts to set A = —% in the homogeneous parabolic
Lagrangian (24) and in the homogeneous hyperbolic Lagrangian (26) (the results of [1]
are recovered, as it should be, in these special cases). These restrictions, however, can no
longer be justified for the N-extended superconformal actions with N” > 4. As already
pointed out in Section 2, in the N > 4 cases, the parameter A\ becomes critical. It
specifies under which of the inequivalent superconformal algebras the mechanical system
is invariant.

5 Conformal actions in d =2

It is instructive to extend the previous analysis to d = 2 conformally invariant actions. In
the Lagrangian framework and classical case, the infinite-dimensional conformal algebra
is titt @ toitt, the direct sum of two copies of the Witt algebra toitt.

Let 215 be the coordinates of the plane. The LE generators of a D-module rep of
titt @ witt can be written in terms of the chiral/antichiral coordinates zL = 7 + 5.
The LE generators can be recovered from the d = 1 L, generators introduced in Section
2 after replacing either ¢ or 7 (in the respective cases) with zy. The chiral/antichiral
decomposition implies the vanishing of the commutators [L;, L] = 0 for any n,m € Z.

The two-dimensional conformal actions have a Lagrangian of the form

L = gpip +h, (30)

where the + suffix denotes the partial derivative with respect to z..

Looking for conformal invariance under the assumption that homogeneous/homogeneous
or inhomogeneous/inhomogeneous active D-module transformations of ¢(z+) apply on
both chiral/antichiral sectors, we are led to the following results. Contrary to the d =
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1 case, the parabolic and hyperbolic D-module reps produce the same output for the
Lagrangians, while the actions are invariant under the whole infinite set of LT generators.
The two surviving inequivalent cases correspond to the Homogeneous or the Inhomo-
geneous transformations, respectively.
In the Homogeneous case g, h are restricted so that the conformally invariant La-
grangian is

C 1
L = (p—iwsof + Chyp3, (31)
with C, Cy arbitrary constants.
The resulting action is invariant under the 6= (p) = —z1 o1 — A(n + 1)z} o transfor-

mations.
In the Inhomogeneous case we recover the Liouville action. The metric needs to be a
constant, while the potential is the exponential Liouville potential. We have

L = Ciprp_+ Cher. (32)

The corresponding action is invariant under the 6 (p) = —2% ¢ — p(n + 1)2% transfor-
mations.

By requiring the action being dimensionless, and assuming [z+] = —1, we obtain the

Lagrangian scaling dimension [£] = 2.
In the Homogeneous case the scaling dimensions are fixed to be

[l =2X [ =[C] =[N =0 (33)

(therefore, no dimensional parameter is present in the theory).
In the Inhomogenous (Liouville) case, for an arbitrary value s, the scaling dimensions are

o] =[p] =5, [Ci]=-2s, [Co]=2. (34)

One should note that the classical Liouville action is invariant under two separate copies
of the centerless Virasoro algebra. Even in this case, on the other hand, the associated
Noether charges, endowed with a Poisson brackets structure, necessarily close the centrally
extended version of the algebra, the full Vir @ Vir algebra. It is a consequence of a non-
equivariant moment map applied to the Liouville theory (see [23] for details).

6 On superconformal algebras

We discuss here two types of superconformal algebras, the supersymmetric extensions of
the d = 1 conformal algebra s/(2) and the supersymmetric extensions of the Virasoro
algebra.

The finite one-dimensional superconformal algebras belong to the simple Lie super-
algebras classified in [24, 25, 26] and satisfy special properties. A d = 1 superconfor-
mal algebra G admits a grading [27] G = G_; & Q_% @ Go P g% @ Gi. Its even sector
Geven = Go ® G_1 @ G is isomorphic to sl(2) & R, where the subalgebra R is known as
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R-symmetry. The odd sector (G 1 @Gy ) is spanned by 2N generators (N is the number
of extended supersymmetries).
At fixed N the positive sector G- is isomorphic to the d = 1 superPoincaré algebra (the
algebra of the N-extended supersymmetric quantum mechanics [28]).

If we denote, see (1), the sl(2) generators as D, H, K, we have that G; (G_1) is spanned
by the positive (negative) root H (K'), while Gy = DC @ R.

We are especially interested in the N = 1,2,4, 8 extensions. The corresponding list
of d = 1 superconformal algebras is given by osp(1|2) for ' =1 and si(2|1) for N = 2.
For N/ = 4 we have the exceptional superalgebras D(2,1;«), depending on the complex
parameter a # 0,—1 and A(1,1) = sl(2|2)/Z (it can be recovered for a = 0,—1). Four
distinct simple Lie superalgebras exist for N' = 8: A(3,1), D(4,1), D(2,2) and the
exceptional superalgebra F'(4).

The exceptional superalgebras D(2,1;«), D(2,1;a’) are isomorphic iff o/ belongs to
an S3-group orbit generated by the moves a — i and a — —(1 + «a), i.e. if o takes one
of the six values

a, éu _(1+CY)7 _(liay _(1—;&)’

(35)

_«
(1+a) "

The (homogeneous and parabolic) D-module reps of the above d = 1 superconformal
algebras have been constructed in [2] (the N' = 1,2, 4 cases and one N/ = 8 example) and
[3] (the remaining A" = 8 cases). The construction relies upon the classification, presented
in [29] and [30], of the d = 1 superPoincaré (the G- subalgebra) D-module reps.

Concerning the d = 1 superPoincaré D-module reps for N = 1,2,4, 8, the results can
be summarized as follows. The differential operators act on N bosonic and N fermionic
fields (the supermultiplet). For any k= 0,1,..., N, we have k fields with scaling dimen-
sion A (they are known as the “propagating bosons”), N fields (the fermions) with scaling
dimension A + 3 and the remaining N — & fields (the so-called “auxiliary bosons”) with
scaling dimension A\ + 1. Both a supermultiplet and the associated d = 1 superPoincaré
D-module rep will be denoted with the symbol “(k, N N — k).

The extension to a d = 1 superconformal algebra D-module rep requires introducing
(in compatible way, so that to close the (anti)commutation relations) the extra differential
operators associated to the G, generators.

The [2] and [3] results can be summarized as follows:

i) for N' = 1,2 and any value of the scaling dimension \ (no criticality), the (k, N, N —k)y
supermultiplet induces a D-module rep for osp(1]2) and sl(2|1), respectively;

i) for N' = 4 the (k, N', N'— k), supermultiplet induces a D-module rep for the D(2,1; a)
superalgebra with the identification

a = (2—k)A (36)

(since a, up to the (35) relations, parametrizes inequivalent superalgebras, we already
encounter here the criticality of the scaling dimension);
i) for N' = 8 the (k, N, N'— k), supermultiplet induces a D-module rep for a supercon-
formal algebra only for k£ # 4 and at the critical scaling dimensions

A= N =2 (37)
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the given superalgebras are D(4, 1)for k = 0,8, F'(4) for k =1,7, A(3,1) for k = 2,6 and
D(2,2) for k = 3,5.

The D-module reps for the NV = 4 d = 1 superconformal algebra A(1,1) (recovered
from the o = 0, —1 values) are, in particular, obtained at the critical values

1
A=0 and A=——= (k#2) (38)
k—2
for, respectively, the supermultiplets
(k,4,4 —k)x=0 Vk=0,1,2,3,4 and (k,4,4— k)A:ﬁ, k # 2. (39)

The singular transformation, discussed in Section 2, which relates the parabolic and
hyperbolic D-module reps of sl(2) (producing, in particular, the (13) equality between
the respective scaling dimensions) is applicable in all supersymmetric cases. As a con-
sequence, homogeneous hyperbolic D-module reps, with the same criticality properties
of the corresponding parabolic cases, are immediately obtained for all the above listed
superalgebras.

For what concerns the supersymmetric extensions of the Virasoro algebras, it is known
[31] that non-trivial central charges can only exist up to N' = 4. Since in the following
we are dealing with D-module reps, here we only need to consider the centerless (¢ = 0)
N = 1,2, 4 superVirasoro algebras which generalize the Witt algebra.

The centerless N = 4 superVirasoro algebra is spanned by the even generators L,,, J&
and by the odd generators Q!, where I = 0,1,2,3 and i = 1,2, 3. The centerless N' = 1,2
superVirasoro algebras are its subalgebras, obtained by restricting / = 0,1 and 7« = 1 for
N =2and I =0 for N =1 (the latter case includes only the L,, Q° generators). Two
variants of the superalgebras exist [32], the Ramond (R) and the Neveu-Schwarz (NS)
versions. In both cases n is an integer (n € Z); in the Ramond version r is also an integer
(r € Z), while in the Neveu-Schwarz version r is a half-integer number (r € 1 + Z).

The (anti)commutators of the centerless N' = 4 superVirasoro algebra are explicitly
given by

[Lma Ln] = (m - n)Lm—HLa
n

[Ln’ Qq{] - (E - 7”) £L+7‘7

[Lm Jrzn] = _m‘]riz-i-mv

{Q(r)a QS} - 2Lr+57
{QB’ Q) = 2(r— S)J’;L'—i-s?
{Qi, Qé} = 25ier+s + 26”%(7“ - S)Jf-i-sv

[ 27‘]71] = 5 n+ro
Q) = Q0 Lk
[T, T = =Rk (40)

The finite d = 1 A = 4 superconformal algebra A(1,1) is recovered as a subalgebra.
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In the Ramond version the A(1,1) generators are Lo, L1, QL ,, J¢;

in the Neveu-Schwarz version they are L., Lo, Qi%, J§.

The osp(1]2) subalgebra is given by the generators

LO,Lﬂ,Qi% (NS) or Lo, Lo, Q% (R).

The si(2|1) subalgebra is given by the generators

Lo,Lil,Qi%, i%,(](:)l (NS) or LO,LiQ, 9|:17Q}|:17‘](} (R)

An extra centerless superVirasoro case which does not fit into the above scheme and
contains an extra set of odd generators (W,) is given by the N' = 3 extension. The even
generators of the ' = 3 centerless superVirasoro are L, and J’, while the odd generators
are Q' and W, (i = 1,2,3). The (anti)commutators are explicitly given by

[Lm7 LTL] - (m - n>Lm+n7
i n i
[Lm Qr] = (5 - T) n+rs
[L”’ J;n] = _m‘]}z—&-ma
n
[Lm Wr] = _(5 + T)Wn+r7
(QLQ)) = 2Lt 285 — )5,
i 75 L B
[ '7”7‘]7]1] = _ieijZ-i-r - E(SJWnJrra
{Q., W} = 2J,
. . 1 ..
[‘];m Jrjn] - _éewk‘]ﬁ-&-mv
[‘]7217 WT] = Oa
{WT7 Ws} - O (41)

The finite subalgebra consisting of the twelve generators Lg, Ly1, J¢, Q; ; (please note the
2

absence of the W,’s generators) is the d = 1 N/ = 3 superconformal algebra B(1,1) =
0sp(3]2).

In [3] a D-module rep for B(1, 1) was constructed. It acts on the (1,3,3,1) supermul-
tiplet which contains one bosonic field of scaling dimension A, three fermionic fields of
scaling dimension \ + %, three bosonic fields of scaling dimension A + 1 and one fermionic
field of scaling dimension A\ + % This D-module rep (existing for an arbitrary A) is
non-critical.

7 New results for superconformal D-module reps

In this Section we concentrate all new results concerning D-module reps of superconformal
algebras. Our analysis heavily used algebraic computations with Mathematica.

Two classes of results are presented. At first we extend the construction presented in
[2] and [3] of the homogeneous D-module reps to the case of the inhomogeneous D-module
reps of the d = 1 finite superconformal algebras (the ones we introduced in Section 6).
Next, we extend the [2] and [3] results to the case of D-module reps (both homogeneous
and inhomogeneous) of the centerless N' = 1,2, 3,4 superVirasoro algebras.
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The explicit presentation of these D-module reps is given in Appendix B.

As discussed in Appendix A, the new class of inhomogeneous D-module reps are
obtained for A = 0 and p # 0.

Since the presence of at least a propagating boson is required to construct the inho-
mogeneous term, the inhomogeneous supermultiplets (k, N, N' — k) —o 20 can only exist
for k> 1.

The list of inhomogeneous D-module reps for the finite d = 1 superconformal algebras
of Section 6 is given by

N =1 : osp(12) with (1,1)o,,

N =2 : sl(2]1) with (1,2,1)0,, (2,2)o,

N =3 : B(1,1) with (1,3,3,1)0,,

N=4 : A(1,1) with (1,4,3)0, (2,4,2)0, (3,4,1)0,, (4,4,0)0,,

N =8 : none (42)

(the last result is a consequence of the fact that, for N' = 8, the d = 1 finite superconformal
algebras have critical scalings A # 0).

Concerning the centerless superVirasoro algebras, the homogeneous supermultiplets
are encountered for

N =1 SVir: (k,1,1—k),, k=0,1 with X\ arbitrary,
N =2 SVir: (k,2,2—k),, k=0,1,2 with X arbitrary,
N =3 SVir: (1,3,3,1),, with A arbitrary,
1
N =4 SVir: (k,4,4—k), k=0,1,2,3,4 with A=0 or )\:m(l{;&%.
(43)

The inhomogeneous D-module reps of the centerless superVirasoro algebras are only
encountered for N’ = 1,2, 3 but not for N’ = 4:

N =1 SVir: (1,1),,

N =2 SVir: (2,2,0), and (1,2,1)p,,

N =3 SVir: (1,3,3,1),,

N =4 SVir: none. (44)

It is instructive to show the reason for the absence of the inhomogeneous D-module
reps for the centerless N' = 4 superVirasoro. It is due to the fact that, in particular, the
closure of the algebra requires the commutators [J3, Q2] to be proportional to the Q..
generators. Let’s take, as an example, the (4,4, 0) A,p supermultiplet. We are led to a
system of equations to be solved:

M— = = A,

1

2

(% NG+ Men (1 —4N) = A(—0, — 2(n + )N,
—(n+r(dA=1)p = —2A(n+r)p, (45)
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where A is a proportionality constant.
To solve the system for all n, r, either one has to set A = % and p arbitrary (which is
equivalent to the homogeneous representation (4,4,0)1) or A = p =0,

1

By restricting the conditions ton = 0 and r = £7 (%che case of the A(1, 1) subalgebra),
the system is solved for arbitrary values of A and p.

The inspection of the consistency conditions induced by all (anti)commutators leads
to the results that we have presented in this Section.

It is worth pointing out, as a last comment, that the inhomogeneous D-module reps
discussed here consist of a different and inequivalent class of transformations with respect
to the inhomogenous D-module reps discussed in [2] and [3]. There, the si(2) generators

act homogeneously and the representations are only obtained at the critical value A = —1.

8 Some examples of N = 1,2 superconformal actions
in d = 1,2 dimensions

We illustrate here an application of supersymmetry with the construction of some N’ = 1,2

superconformal actions in d = 1,2 dimensions.

In d = 1 we obtain the following osp(1|2)-invariant actions for the A = 1 supermulti-
plet (1,1) (a single boson ¢ and a single fermion v):

I - for the homogeneous parabolic case the Lagrangian is

142X

L = Cp ~ (¢ +9i), (46)

with dimensions [¢] = A, [] = A+ %, [C] = [A] = 0;
II - for the inhomogeneous parabolic case the Lagrangian is

L = Ce 7 (P + ), (47)
with dimensions [¢] = [p] = s, [] = s + 3, [C] = =1 — 2s;
I1I - for the homogeneous hyperbolic case the Lagrangian is

142X

(@8 ) + A2 R, (48)

with dimensions [¢] = [¢] = A, [u] =1, [C] = [\ =0;
IV - for the inhomogeneous hyperbolic case the Lagrangian is

L = Clg~

L = Ce (¢ + i + pi?p%), (49)

with dimensions [p] = [¢] = [p] = s, [u] =1, [C] = —1 — 2s.

We note a similarity and a difference with respect to the purely bosonic results. Just
like the bosonic actions, the hyperbolic cases present a potential term, proportional to
Cip?, which is absent in the parabolic cases. On the other hand, the potential terms
proportional to Cy and appearing in (24-27) are now excluded due to the supersymmetry
constraint.
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In d = 2, for a single boson ¢ and a single fermion 1, we obtain N' = 1 chiral
(antichiral) actions, invariant under a single (chiral/antichiral) copy of the centerless su-
perVirasoro algebra. The Lagrangians are given by

C
LY = E(SD%L + g), (50)
for the homogeneous case and

LY = Cloyp- +9is) (51)

(the constant kinetic term) for the inhomogeneous case.

It should be pointed out that, in order to get the superLiouville extension, a second
fermion needs to be added, see [33] and [34].

As an N =2 example in d = 1 we present the sl(2|1)-invariant actions for the super-
multiplet (1,2,1) (a propagating boson ¢, two fermions 91,1, and an auxiliary bosonic
field g). The Lagrangians are:

I - for the homogeneous parabolic case

. 7 1 i —
L= A@+duhi+0°) = g ATy, A=Cp 5 (52)
I - for the inhomogeneous parabolic case
. 1 . .
L = A+ v +9°) - §A<p€”¢z‘¢j9; A=Ce »; (53)

111 - for the homogeneous hyperbolic case

. ; 1 i _
L= A"+ i+ 11°0°) = 5p* ApePithig + PN AQ®, A= Cpm 575 (54)
IV - for the inhomogeneous hyperbolic case

. : 1 .
L = A(<,02 + pid; + ,u292) — §,u2ASDe Thivjg + pW2p2A, A=Ce ». (55)

9 On N =4d =1 superconformal actions with excep-
tional D(2,1;«) invariance

The supermultiplet (1,4, 3), consists of a single propagating boson ¢, four fermions v, ¥;
and three auxiliary bosons g¢; (here i = 1,2, 3; in the formulas below we also use the index
I =0,1,2,3). For this supermultiplet, see formula (36), we have o = A. We list here its
superconformally invariant actions.
For homogeneous transformations the Lagrangians of the D(2, 1; a)-invariant actions are,
in the homogeneous parabolic case,

L 1 1
L = AP +vrbr+g7) + A(Yobigi + € *ihigr) + EAWG K pobip b,

_ 1420

with A=Co o (56)
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and, in the homogeneous hyperbolic case,
-2 i 2 2 2 L ik
L = A"+ b + pog;) + pm Ay (horhigi + 3¢ Vi)igr) +
1 -
6#214@@6”%0%%% + pta® Ag?,

_ 142«

with A=Cyp o, (57)

For inhomogeneous transformations, the requirement that p # 0 with A = 0 implies that
the superconformal actions are only invariant under the A(1,1) superalgebra.

For inhomogeneous transformations the Lagrangians of the A(1,1)-invariant actions are,
in the inhomogeneous parabolic case,

: ; 1, 1.,
L= A+ +0]) + Ap(Yotigi + e Uitbion) + ¢ Agoe " Yotithi,
with A= Ce s (58)

and, in the inhomogeneous hyperbolic case,
.2 i 2 2 2 L ik
L = A"+ prdr + p7g;) + po Ap(Yothigi + € Vithjgr) +

1 )
6M2Aw€”k@/}o¢i¢j¢k + 1P A,
with A= Ce ». (59)

10 Conclusions

We summarize the results of the paper. For what concerns representations, besides the
results on the bosonic sl(2) and Witt algebras, we introduced the new class of inhomo-
geneous D-module reps for the finite simple Lie superalgebras osp(1]2), si(2]1), B(1,1)
and A(1,1). These new reps, at the scaling dimension A = 0, depend on the parameter p
which measures the inhomogeneity.

D-module reps have also been constructed for the centerless superVirasoro algebras:
homogeneous reps for the N = 1,2, 3, 4 extensions and inhomogeneous reps for the N’ =
1,2,3 extensions. They are based on the (k, N, N — k) supermultiplets (for N' = 1,2, 4)
and on the (1,3,3,1) supermultiplet (for A" = 3).

We pointed out that, for both homogeneous and inhomogeneous reps, two variants of
the D-module reps can be presented: parabolic and hyperbolic/trigonometric. They are
mutually related by a singular transformation.

We ended up with four different types of active (super)conformal transformations
(hom. par., inhom. par., hom. hyp. and inhom. hyp.) that can be used, in the Lagrangian
setting, to construct inequivalent (super)conformal actions in d = 1 and d = 2 dimensions.

For systems with N' = 0,1, 2,4 we presented the four types of d = 1 actions invariant
under their respective finite (super)conformal algebra.

In d = 2 the two classes of homogeneous and inhomogeneous conformal actions are
exemplified by (31) and by the Liouville action (32), respectively.
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The d = 1 (super)conformal actions contain no dimensional constants only in the
homogeneous parabolic case. This is the class of theories discussed in the [14] review.
New classes of superconformally invariant theories can therefore be constructed from the
three remaining types of transformations.

It is rather straightforward to extend the results here presented to more complicated
cases. For N/ = 4, for instance, one can investigate multi-particle systems by applying
our construction to a certain number of supermultiplets in interactions. The provision is
that the supermultiplets should carry a representation of the same superconformal algebra
(either A(1,1) or D(2,1; «) for a fixed «).

One of the possible interesting applications of our work concerns the investigations on
the CFT(1)/AdS(2) correspondence (see [35] and [36]). Our results shed a new light on
the left side (the conformal side) of the correspondence.

A very promising field of investigation concerns the extension to non-relativistic confor-
mal Galilei or conformal Newton-Hooke systems (see [37, 38]). Recently, a lot of activity
in constructing models for this kind of theories has been motivated by the CFT/AdS
correspondence applied to non-relativistic systems like the ones appearing in condensed
matter (see, e.g., [39, 40]). Unlike the (1 + 0)-dimensional theories considered here, these
conformal systems live in (1 + d)-dimension, d being the number of space coordinates.
A recent paper [41] proved how the (homogeneous parabolic) N' = 2 superconformal
D-module reps in (14 0) can be enlarged to induce N' = 2 ¢-conformal Galilei superal-
gebras in (1 4+ d) dimensions. It is tempting to extend the new class of one-dimensional
superconformal D-module reps discussed here to the (1 4 d)-dimensional case.

Appendix A: On D-module reps and the interpola-
tion of Hom and Inhom conformal actions

In principle one can “mix” the homogeneous and inhomogeneous D-module reps of
the Witt algebra by allowing the couple of parameters (A, p) being simultaneously non-
vanishing. In the parabolic case, for instance, the general Witt algebra transformations
applied on the field ¢ are

LEr (o) = —t""o — Am+y)t" o — p(m + B)t". (A1)

LP?" is proportional to the Hamiltonian if we set v = 1 and § = 1.
For A\ # 0 we can write

L (p) = —t"™p—A(m+ D" (e + 0), (A.2)
so that the action of the homogeneous transformation with scaling dimension \ # 0 is
recovered for the shifted field = ¢ + £. Therefore the (A, p) transformations with A # 0
are equivalent to the pure homogeneous transformations with scaling parameter A and
p = 0. The same is true in the hyperbolic case.

(A.1) fails to interpolate the two cases, leaving us with the two inequivalent classes of

i) (A, 0) homogeneous and

ii) (0, p) inhomogeneous transformations.
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The (A.1) transformations, on the other hand, are useful to interpolate the conformally
invariant actions. An sl(2)-invariant action (for m = £1,0) based on (A.1) is given by
the Lagrangian

L = Ki(g+p) & @+ K(Ag+ )7, (A.3)

with K, Ky arbitrary constants.
The homogeneous Lagrangian (24) is recovered for p = 0.
The inhomogeneous Lagrangian (25) is recovered in the A — 0 limit by suitably
rescaling the constants K7, Ky. This is accomplished by expressing the (A.3) Lagrangian
142X

as )
Ao\ X
p
and by taking K1 = Cip~ > and Ky = Cyp™>.

The possibility offered by the interpolation allows simplifying the constructions of the
homogeneous and inhomogeneous conformally invariant actions, since both actions can
be derived at one stroke.

The extension of the properties here discussed to the supersymmetric cases is imme-
diate.

Ao\ A
L=Kp > (1+7@) ¢* + Kop

>

>l=

Appendix B: Explicit presentation of the new super-
symmetric D-module reps

We present here, for completeness, the explicit constructions of the new D-module
reps introduced in Section 7. They are

i) the inhomogeneous D-module reps of the finite d = 1 superconformal algebras
osp(1]2), sl(2]1), B(1,1), A(1,1) and

ii) the (both homogeneous and inhomogeneous) D-module reps of the centerless N =
1,2, 3,4 superVirasoro algebras.

The D-module reps with N' = 1,2,4 act on the (N + 1|N') supermultiplets m,
m? = (o1, Ok G1s - o N ks L1, - .., Pnr), With component fields ¢, g;, % and con-
stant entry 1 in the (N + 1)-th position. The N' = 3 D-module rep acts on a (5[4)
supermultiplet with 1 in the 5-th position. The homogeneous D-module reps are recov-
ered by deleting the row and the column associated with the constant entry 1 in the
supermultiplet.

For N' = 1, in matrix form and in the hyperbolic presentation, we can write for the
centerless superVirasoro generators

0 0 1
QY = e 0 0o 0 |,
-0y —2rA —2rp 0
—0y —nA —np 0
L, = e 0 0 0
0 0 =8 —in(1+2X)

(B.1)
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The inhomogeneous D-module rep of osp(1|2) is recovered for n =0, £1, r = j:% and by
setting A = 0.

To save space, in the remaining cases we limit to present here the odd generators (the
even generators are recovered, see (40), from their anticommutators) and write them in
terms of the F;; matrices, whose entries are 1 in the i-th row, j-th column and vanishing
otherwise. We have,

for N = 2:
the (2,2,0) rep is constructed from

Q) = €"'[Eu+ By —2(Eg + Es3)rp — (B + Es2) (0, 4 2r)\)],
Q}n = €rt[E15 — E24 + 2(E43 — E53)7’p + (E42 — E51)((9t + 27’/\)], (BQ)

the (1,2, 1) rep is constructed from

Q? = 6“ [E14 + E52 — 2E43’/’p — E25T’ — (E25 + E41)(8t + 2’/’/\)],
Qi = e”[Elg, — E42 — 2E53Tp + E24T' + (E24 — E51)(8t + 27")\)], (B?))

the (0,2,2) rep is constructed from

Qg = 6”[E41 + E52 — (E14 -+ E25)(8t +r+ 27’)\)},
Q}o = €rt[E51 — E42 + (E24 — E15)(8t +r+ 27“)\)], <B4)

for N = 4:
the (4,4,0) rep is constructed from

Q) = €"[Eig+ By + Ess + Eyg — 2(Egs + E75 + Ess + Eos)rp
—(E¢1 + Ero + Egg + Eoq) (0 + 2r)\)],
Qr = €"[Ei — Fag — Ezg + Eus + 2(Ees — Ers — Ess + Eos)rp
+(Esa — Er1 — Egq + Eg3) (0 + 210)],
QF = €"[Eis+ By — F3s — Esr + 2(Ees + E75 — Eg5 — Eos)rp
+(Eg3 4+ Ery — By — Eg9)(0s + 21 )],
Q) = €"'[Ey — Ex+ Es; — Eyg + 2(Ees — Ers + Ess — Eos)rp
+(Egs — Ers + Eso — Fo1)(0: + 2r\)]; (B.5)

the (3,4, 1) rep is constructed from

Q) = €"[Eis+ By + Ess + Eoy — 2(Egs + Ers + Egs)rp — Eagr
—(Ex9 + Ee1 + Ers + Eg3) (0 + 2r))],
Q; = €"'[Eir — By — Esy + Egy + 2(Egs — Ers + Eos)rp — Eusr
+(Eso — Esg — Er1 + Eg3) (0, + 21 0],
Q: = €"'[Eis+ Exw — E3s — Eny + 2(Egs — Ess — Eos)rp + Eurr
+(Ey7 + Egs — Eg1 — Eg2) (0 + 21\,
Q) = €"[Eig— Eos + E3r — Egu + 2(Ess — Ers — Eos)rp + Eugr
+(Ei — Ers + Eso — Eo1) (0 + 2r\)]; (B.6)



CBPF-NF-001/14 21

the (2,4,2) rep is constructed from

QE = ¢"[Ei+ Ear + Esy + Eoy — 2(Egs + Ers)rp — (Ess + Eo)r
—(Ess + Eyg + Eg + Er2) (0, + 2r))],
Q, = €"[Eir — B+ Esq — Egg + 2(Egs — Ers)rp + (Esg — Eyg)r
+(E39 — Eus + Eg2 — En) (0 + 2r))],
Q7 = €"[Eis+ By — Egs — Ery — 2(Ess + Eos)rp + (Es + Eur)r
+(EBss + By — Eg1 — Eg9)(0; + 2r))],
Q) = €"[Ey — Ey — Egy + Er3 + 2(Ess — Eos)rp + (Ess — Esr)r
+(Ey — Es7 + Eso — Eo1) (0 + 2r\)]; (B.7)

the (1,4,3) rep is constructed from

Q? = € [Er6 + Ero + Es3 + Eoy — 2FEgs1p
—(Ear + Ess + Eyg)r — (Ear + Ess + Eug + Ee1) (0, + 2rA)],
QF = €"[Ei — Eeg + Esy — Eoz — 2E51p + (Fag + Ez9 — Eug)r
+(Eas + B39 — Eys — E71)(0r + 21N,
Q? = €"[Eig— Eg3 — Egy+ Egy — 2Egsrp + (E35 — Fag + Eg7)r
+(Es — Fog + By — Eg1) (0, + 21 )],
Q) = €"[Ey— Egy+ Er3 — Egy — 2Egs1p + (Eos — Esp + Eyg)r
+(Eos — Es7 + Ess — Eo1) (0 + 21 \)]; (B.8)

the (0,4,4) rep is constructed from

Q) = €"[Esi+ B+ Es3 + Eoy — (E16 + For + Ess
+E49) (0 + 17+ 2r )],
QF = €"[En — Ees + Fsy — Eo3
+(Eqy — E17 + E39g — Egg)(0; + 1+ 2r)\)],
Q7 = €"'[Esi — Egs — Bra+ Eo
+ (B3 — Ehg — Fog + Ey7)(0p + 1 + 2r X)),
Q) = €"[Er3— Eg — Esy + Eg
+(FE9s — Evg — Es7 4+ Fyu6) (0 + r + 2r))]. (B.9)

The above operators produce D-module reps for the respective superalgebras only at the
critical values, which have been presented in Section 7, for A and p. The inhomogeneous
D-module reps of the finite d = 1 superconformal algebras are obtained for r = j:% and
A=0.

The N' = 3 D-module rep of the centerless superVirasoro algebra (41) exists for
arbitrary values of A and p. At A = 0 the restriction to the B(1,1) subalgebra generators
produces the (1,3, 3,1), inhomogeneous D-module rep of B(1,1).

To reconstruct the full D-module rep is sufficient to present the three Qs operators.
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The N = 3 SuperVirasoro (1,3,3,1) rep is obtained from

Q, = €"[Fyx— Esy — Egy + Esq — 2E7s1p
+(Fa — Eus + 2E03)r + (Egs — Ess — Ery + Eo3)(0; + 2r))],
Q: = €"[Eis+ By — Eg3 — Erq — 2Egsrp
+(Es36 + Eyr — 2Eg2)1 + (E36 + Eyr — Egy — Eg2)(0; + 2r)\)],
Q) = €"[E+ Ew+ B+ Es3 — 2Egsrp — (Boy + Ess + 2Eg))r
—(Eyr + Ess + Eg1 + Eoa)(0; + 2rA)]. (B.10)
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