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Abstract

This paper introduces the parastatistics induced by Z2×Z2-graded algebras. It accommo-
dates four kinds of particles: ordinary bosons and three types of parabosons which mutually
anticommute when belonging to different type (so far, in the literature, only parastatistics
induced by Z2×Z2-graded superalgebras and producing parafermions have been considered).

It is shown how to detect Z2×Z2-graded parabosons in the multi-particle sector of a quan-
tum model. The difference with respect to a system composed by ordinary bosons is spotted
by measuring some selected observables on certain given eigenstates. The construction of
the multi-particle states is made through the appropriate braided tensor product.

The application of Z2- and Z2 × Z2- gradings produces 9 inequivalent multi-particle
Hilbert spaces of a 4× 4 matrix oscillator. The Z2 ×Z2-graded parabosonic Hilbert space is
one of them.
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1 Introduction

This paper introduces the parastatistics induced by Z2 × Z2-graded Lie algebras and gives the
proof that the associated particles, the Z2×Z2-graded parabosons, can be detected by performing
a measurement in the multi-particle sector of a quantum model.

Z2×Z2-graded Lie algebras and Lie superalgebras were introduced by Rittenberg and Wyler
in [1, 2]. The term “color (super)algebra” was used (see also [3]) to describe both cases.

The particles (bosons and fermions) of an ordinary theory can be associated with 1 bit of
information (let’s say 0 for bosons and 1 for fermions), while the particles of a Z2 × Z2-graded
theory are described by 2 bits of information (00, 10, 11, 01).

The four types of particles in models based on Z2 × Z2-graded Lie superalgebras are (see
[4]) the ordinary bosons (00), two types (10 and 01) of parafermions and the exotic bosons
(11); the parafermions of different type commute, while the exotic bosons anticommute with the
parafermions.

The four types of particles in models based on Z2 × Z2-graded Lie algebras are (see [5]) the
ordinary bosons (00) and three types (10, 11 and 01) of parabosons; the parabosons of different
type anticommute.

The Z2×Z2-graded physics, with particles accommodated according to Lie superalgebras, is
an obvious extension of ordinary physics. Indeed, ordinary bosons and fermions can be recovered
from, respectively, the 00 and 10 sectors, while leaving empty the 11 and 01 sectors. Only
recently, however, the open question that was lingering around was solved in [6], by showing
that the colored world of Z2 × Z2-graded Lie superalgebras produces quantum models which
cannot be mimicked by black/white ordinary bosons and fermions alone.

Symbolically, this result can be expressed as

Z1
2 ·LSA ⊂ Z2

2 ·LSA, (1)

meaning that the systems recovered from Z2-graded Lie superalgebras are a proper subset of
those recovered from Z2 × Z2-graded Lie superalgebras.

The approach of [6] emphasizes the role of the braided tensor product, as defined in [7],
in the construction of the multi-particle states. This approach is here extended to derive the
physics of the parabosons obtained from Z2×Z2-graded Lie algebras. A symbolical consequence
of the present work can be expressed as

Z0
2 ·LA ⊂ Z2

2 ·LA, (2)

meaning that the bosonic systems recovered from ordinary Lie algebras are a proper subset of
those recovered from Z2 × Z2-graded Lie algebras.

In the first years after the introduction of Z2 × Z2-graded Lie superalgebras their physical
applications received some limited attention, see [8, 9, 10, 11]. More recently, a systematic
investigation of their role as symmetries of dynamical systems started. Indeed, they appear
[12, 13] as symmetries of the Lévy-Leblond equations for nonrelativistic spinors; furthermore,
classical invariant worldline [4] and two-dimensional [14] sigma models have been constructed,
invariant quantum mechanical models have been presented in [15, 16] and conformal quantum
mechanics in [17]. The parastatistics induced by Z2×Z2-graded Lie superalgebras was introduced
in [18, 19] and further investigated in [20, 21, 22, 23, 24, 25, 6].

Despite this activity on graded Lie superalgebras, the possibility of applications of Z2 × Z2-
graded Lie algebras has been ignored, probably because they are not extensions of ordinary [26]
Lie superalgebras and do not include fermions. Indeed, a consistent number of present works
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are focusing on even larger (the Zn2 , for n > 2) graded extension of Lie superalgebras, see e.g.
[27, 28, 29] and references therein for the mathematical literature.

On the other hand, as pointed out very recently in [5], several costructions (invariant models,
the graded superspace of [30], etc.) which are available for graded superalgebras can be extended
to Z2 × Z2-graded Lie algebras. This is the starting point of the present investigation.

The scheme of the paper is as follows. It is shown at first that the 4× 4 matrix Hamiltonian
discussed in [15, 16], besides being supersymmetric and invariant under the one-dimensional
Z2 × Z2-graded Poincaré superalgebra, is also invariant under a Z2 × Z2-graded Lie algebra.
This offers the possibility to apply the Z2×Z2-graded parabosonic statistics to its multi-particle
sector.

The Hilbert space is constructed for the special case of the harmonic oscillator potential. It
is shown that different statistics can be implemented by using Z2- and Z2 × Z2- gradings. As a
consequence, a total number of 9 inequivalent multi-particle Hilbert spaces are encountered. This
statement can also be rephrased as “9 inequivalent multi-particle quantizations”. The analysis
of [6] discussed just three of them (bosonic, supersymmetric and Z2 × Z2-graded parafermionic
variants). Among the extra quantizations presented in this paper a case corresponds to the
Z2×Z2-graded parabosons, while another case corresponds to a different implementation of the
Z2 × Z2-graded parafermions.

The multi-particle states are constructed by taking the raising operators as elements of a
Universal Enveloping graded Lie (super)algebra and by applying the associated coproducts.

The proof that the 9 variants indeed produce inequivalent multi-particle models is given. In
particular, observables discriminating the Z2 ×Z2-graded parabosonic variant from the bosonic
one are constructed.

More comments about the results and the future perspectives are given in the Conclusions.
The index of the paper is:
1 - Introduction,
2 - The 4× 4 graded Hamiltonian,
3 - The construction of multi-particle Hilbert spaces,
4 - The 9 inequivalent 2-particle Hilbert spaces,
5 - Discriminating 2-particle observables,
6 - Conclusions,
Appendix A - Relevant formulas for graded (super)algebras,
Appendix B - Representations of 2-particle observables.

2 The 4× 4 graded Hamiltonian

The 4× 4 hermitian matrix Hamiltonian H, given by

H =
1

2

 −∂2
x +W 2(x) +W ′(x) 0 0 0

0 −∂2
x +W 2(x) +W ′(x) 0 0

0 0 −∂2
x +W 2(x)−W ′(x) 0

0 0 0 −∂2
x +W 2(x)−W ′(x)

,
(3)

depends on the prepotential W (x). We set in the above formula W ′(x) = d
dxW (x).

H is invariant, see [15, 16], under both supersymmetry and the one-dimensional Z2×Z2-graded
Poincaré superalgebra.
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We point out here that H is also invariant under a Z2 × Z2-graded Lie algebra. Let us
introduce the hermitian first-order matrix operators Q10, Q01 and constant matrix Z as

Q10 =
−i√

2

 0 0 ∂x +W (x) 0
0 0 0 ∂x +W (x)

∂x −W (x) 0 0 0
0 ∂x −W (x) 0 0

,
Q01 =

1√
2

 0 0 0 ∂x +W (x)
0 0 ∂x +W (x) 0
0 −∂x +W (x) 0 0

−∂x +W (x) 0 0 0

,
Z =

 0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 . (4)

The Hamiltonian H is invariant under the Z2 × Z2-graded abelian Lie algebra a defined by
the following set of (all vanishing) 6 (anti)commutators:

[H,Q10] = [H,Q01] = [H,Z] = 0, {Q10, Q01} = {Z,Q10} = {Z,Q01} = 0. (5)

The algebra a is listed as “A7” in the Table 1 classification of minimal graded algebras presented
in[5]. The grading assignment, according to the (A.8) decomposition, of the a generators is

H ∈ a00, Q10 ∈ a10, Q01 ∈ a01, Z ∈ a11. (6)

The operators Q10, Q01 are square roots of the Hamiltonian (Q2
10 = Q2

01 = H). It follows
that, besides (5), H is invariant under the Z2-graded Lie superalgebra

{Q10, Q10} = {Q01, Q01} = 2H, {Q10, Q01} = 0, [H,Q10] = [H,Q01] = 0, (7)

which defines H as a supersymmetric quantum mechanics [31] Hamiltonian.
We anticipate that these two graded invariant structures produce inequivalent quantum

models in the multi-particle sectors. Essentially, this is due to the fact that the fermions present
in (7) obey the Pauli exclusion principle; this is not the case for the parabosons that, as we will
see, are obtained from (5).

If we specialize W (x) = −x, H becomes the Hamiltonian of the one-dimensional, 4×4 matrix
oscillator. It will be denoted as Hosc; we have

Hosc =
1

2

 −∂2
x + x2 − 1 0 0 0

0 −∂2
x + x2 − 1 0 0

0 0 −∂2
x + x2 + 1 0

0 0 0 −∂2
x + x2 + 1

 . (8)

The single-particle Hilbert space H of the Hosc Hamiltonian was constructed in [15, 6]. It is
obtained by applying raising operators to a lowest weight vector state denoted as |0; 00〉.

The creation/annihilation oscillators a, a†, given by

a =
i√
2

(∂x + x), a† =
i√
2

(∂x − x), (9)

satisfy the commutator

[a, a†] = 1. (10)
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The matrix raising (lowering) operators f †11, f
†
10, f

†
01 (f11, f10, f01) can be introduced as

f †11 =

 0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , f †10 =

 0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 , f †01 =

 0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 ,

f11 =

 0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , f10 =

 0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , f01 =

 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 . (11)

The suffix is chosen in order to denote, in the Z2 × Z2-gradings, the matrix decompositions
expressed in (A.8).

In terms of these operators the Hamiltonian Hosc can be re-expressed as

Hosc = a†a · I4 + f †10f10 + f †01f01 = a†a · I4 + Λ, with Λ = diag(0, 0, 1, 1). (12)

Here and in the following we denote a m×m identity matrix as Im.
The normalized lowest weight vector |0; 00〉 satisfies the conditions

a|0; 00〉 = f11|0; 00〉 = f10|0; 00〉 = f01|0; 00〉 = 0. (13)

We have

|0; 00〉 = π−
1
4 e−

1
2
x2

 1
0
0
0

 . (14)

The single-particle Hilbert space H is spanned by the orthonormal vectors
|n; 00〉, |n; 11〉, |n; 10〉, |n; 01〉 introduced through

|n; 00〉 = (a†)n√
n!
|0; 00〉, |n; 10〉 = (a†)n√

n!
f †10|0; 00〉,

|n; 11〉 = (a†)n√
n!
f †11|0; 00〉, |n; 01〉 = (a†)n√

n!
f †01|0; 00〉.

(15)

At most a single power of f †11, f
†
10, f

†
01 enters the spanning vectors since we have, for any pair of

such operators,

f †] f
†
[ = 0, with ], [ ∈ {11, 10, 01}. (16)

Due to the commutators

[Hosc, a
†] = a†, [Hosc, f

†
10] = f †10, [Hosc, f

†
01] = f †01, [Hosc, f

†
11] = 0, (17)

the (15) states are energy eigenstates whose eigenvalues are read from

Hosc|n; 00〉 = n|n; 00〉, Hosc|n; 10〉 = (n+ 1)|n; 10〉,
Hosc|n; 11〉 = n|n; 11〉, Hosc|n; 01〉 = (n+ 1)|n; 01〉. (18)

One should note that the vacuum state is doubly degenerate:

Hosc|0; 00〉 = Hosc|0; 11〉 = 0. (19)
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For later convenience we introduce the exchange matrices X11, X10, X01. They are hermitian
operators which mutually interchange the 11, 10 and 01 sectors. Their suffix indicates the (A.8)
decomposition when a Z2 × Z2-grading is applied. We have

X11 =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , X10 =

 0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , X01 =

 0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (20)

The matrices X11, X10, X01 are the building blocks in the construction of the observables which
are presented in Section 5.

3 The construction of multi-particle Hilbert spaces

The n-particle Hilbert space H(n) of the (8) Hamiltonian Hosc is a subset of the tensor products
of n single-particle Hilbert spaces H:

H(n) ⊂ H⊗n. (21)

H(n) is a lowest weight vector space whose lowest weight vector |0; 00〉(n) is a tensor product of
the single-particle lowest weight vector |0; 00〉 given in (14):

|0; 00〉(n) = |0; 00〉⊗n. (22)

The space coordinates entering the tensor products of the Hilbert spaces H(n) are denoted as
x1, x2, . . . , xn. In the 2-particle case we set, for simplicity, x1 = x, x2 = y. Therefore, the
normalized lowest weight vector |0; 00〉(2) is

|0; 00〉(2) = π−
1
2 e−

1
2
(x2+y2) · v1. (23)

Here and in the following we denote as vj , for j = 1, 2, . . . , 16, the 16-component column vector
with entry 1 in the j-th position and 0 otherwise.

The construction of the 2-particle Hilbert space assumes the raising operators a†, f †11, f
†
10, f

†
01

introduced in (9,11) to be elements of a graded algebra g (the admissible gradings for g are
discussed in Section 4). The graded algebra g defines its Universal Enveloping Algebra U ≡ U(g).
As recalled in Appendix A, U is endowed with a Hopf algebra structure and in particular of an
operation, the coproduct ∆, which satisfies (A.10,A.11,A.12).

The 2-particle states are recovered from applying the coproducts

∆
(

(a†)n)(f †11)
r11(f †10)

r10(f †01)
r01
)
∈ U ⊗ U (24)

to the vector |0; 00〉(2) which induces the lowest weight representation. Following the convention
of Appendix A, a hat denotes the evaluation of the coproduct in the given representation.
Therefore

̂
∆
(

(a†)n)(f †11)
r11(f †10)

r10(f †01)
r01

)
∈ End(H(2)). (25)

The Hilbert space H(2) is spanned by

|n; r11, r10, r01〉(2) =
̂

∆
(

(a†)n)(f †11)
r11(f †10)

r10(f †01)
r01

)
· |0; 00〉(2). (26)
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The identification |0; 0, 0, 0〉(2) ≡ |0; 00〉(2) holds.
In (26) n is a non-negative integer (n ∈ N0); the restrictions on r11, r10, r01, as discussed in

Section 4, depend on the grading.

As a useful example, it follows that the formula of the 2-particle creation operator ∆̂(a†) is

∆̂(a†) =
i√
2

(∂x − x+ ∂y − y). (27)

By enlarging the graded algebra g and its induced Universal Enveloping Algebra with the ad-
dition of observables such as Hosc, we can determine their actions on the multi-particle sectors.

The 2-particle Hamiltonian H
(2)
osc reads as

H(2)
osc = ∆̂(Hosc) = Hosc ⊗ I4 + I4 ×Hosc. (28)

The construction of the n+ 1-particle Hilbert spaces, for n > 1, is made iteratively by replacing
∆ ≡ ∆(1) with ∆(n). Induced by the coassociativity (A.11) of the coproduct, ∆(n) is defined as

∆(n) = (id⊗∆(1))∆(n−1), (∆(1) ≡ ∆). (29)

4 The 9 inequivalent 2-particle Hilbert spaces

The oscillator Hamiltonian Hosc given in (8) possesses nine inequivalent multi-particle quantiza-

tions. They are induced by the different gradings assigned to the raising operators f †11, f
†
10, f

†
01 in-

troduced in (11) and under the assumption that the lowest weight vector is bosonic. Three of the
quantizations (bosonic, supersymmetric and a version of the Z2×Z2-graded parafermions) were
already discussed in [6]. The extra quantizations are divided into standard and non-standard.
Among the standard ones we obtain the Z2 × Z2-graded parabosons; the non-standard ones
include an alternative quantization based on Z2 × Z2-graded parafermions.

The construction goes as follows: in one case (the bosonic one) f †11, f
†
10, f

†
01 are assumed to

be elements of an ordinary abelian Lie algebra; alternatively, they are assumed to be even/odd
elements of a Z2-graded abelian Lie superalgebra, of a Z2 ×Z2-graded abelian Lie superalgebra
(parafermions) or of a Z2 × Z2-graded abelian Lie algebra (parabosons).

We proceed at first to discuss the 6 standard gradings.

4.1 The 6 standard gradings

In the Z2-grading assignment the 4×4 matrix Hamiltonian Hosc corresponds to a block-diagonal
supermatrix of (4 − p|p) type, with p = 0, 1, 2, 3. The (4|0) case for p = 0 coincides with the
ordinary bosonic matrix. The p = 4 case is excluded if we require the vacuum state to be even
(bosonic).

The six assignments are:

1) {f †11, f
†
10, f

†
01} ∈ 0, {∅} ∈ 1 for (4|0);

2) {f †11, f
†
10} ∈ 0, {f †01} ∈ 1 for (3|1);

3) {f †11} ∈ 0, {f †10, f
†
01} ∈ 1 for (2|2);

4) {∅} ∈ 0, {f †11, f
†
10, f

†
01} ∈ 1 for (1|3);

5) {f †11, f
†
10, f

†
01} ∈ Z2

2 · LSA;

6) {f †11, f
†
10, f

†
01} ∈ Z2

2 · LA.
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The corresponding vanishing (anti)commutators defining the graded abelian algebras aj ,
where j = 1, 2, . . . , 6, are

a1 : [f †11, f
†
10] = [f †10, f

†
01] = [f †01, f

†
11] = 0;

a2 : [f †11, f
†
10] = [f †10, f

†
01] = [f †01, f

†
11] = {f †01, f

†
01} = 0;

a3 : [f †11, f
†
10] = {f †10, f

†
01} = [f †01, f

†
11] = {f †10, f

†
10} = {f †01, f

†
01} = 0;

a4 : {f †11, f
†
10} = {f †10, f

†
01} = {f †01, f

†
11} = {f †11, f

†
11} = {f †10, f

†
10} = {f †01, f

†
01} = 0;

a5 : {f †11, f
†
10} = [f †10, f

†
01] = {f †01, f

†
11} = {f †10, f

†
10} = {f †01, f

†
01} = 0;

a6 : {f †11, f
†
10} = {f †10, f

†
01} = {f †01, f

†
11} = 0. (30)

The three cases already discussed in [6] correspond to the numbers 1 (the bosonic version of
the theory), 3 (the supersymmetric version) and 5 (a Z2 × Z2-graded parafermionic version).

In the above construction we followed the standard block-diagonal matrix format of Lie
superalgebras and, for the Z2×Z2 grading, the (A.8) decomposition. Non-standard supermatrix
formats are discussed in [32]. The procedure for the non-standard decompositions is presented
in the subsection 4.2.

Each algebra aj is extended to the graded algebra aj = {a†, f †11, f
†
10, f

†
01} which contains the

creation operator a†, introduced in (9), as extra generator. Depending on the case, a† belongs

to either the 0- or the 00-sector. Its commutators are vanishing ([a†, f †] ] = 0 for ] = 11, 10, 01).
The multi-particle quantizations are recovered, as explained in Section 3, from the coproducts

defined on the corresponding Universal Eveloping Algebras U(aj). The multi-particle states are
constructed according to formula (26). The signs entering the braided tensor products depend on
the different grading assignments of each one of the above cases. They are given by (A.3,A.13).

The restrictions on the r11, r10, r01 exponents entering (26) are due to these respective signs.
For instance, in the parafermionic quantization r10 takes the values 0, 1; the values taken by r10
in the parabosonic case are 0, 1, 2.

The 6 standard multi-particle quantizations, associated to the respective (30) gradings, are
denoted as follows:

(4|0) : a1, (2|2) : a3, Z2
2-PF : a5,

(3|1) : a2, (1|3) : a4, Z2
2-PB : a6.

(31)

In the last column PF and PB stand for, respectively, parafermions and parabosons.

4.2 The 3 non-standard gradings

The non-standard cases are obtained by applying decompositions of the supermatrices which do
not coincide with the ordinary block-diagonal decompositions; these non-standard formats are
discussed in [32]. For the model under consideration these extra cases can be recovered from
standard decompositions applied to a different diagonal Hamiltonian whose diagonal entries are
permuted with respect to Hosc.

Before proceeding with the construction of the non-standard quantizations let us recall that
the (11) raising operators f †11, f

†
10, f

†
01 create, see (17), particles of respective energy 0, 1, 1.

In a Z2-grading, the standard decomposition of a vector vT = (B,B, F, F ) with 2 bosons and
2 fermions can be replaced, for instance, by the decomposition vT = (B,F,B, F ). In these two
examples the entries of the fermionic supermatrices are respectively accommodated according
to

standard case:


0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ 0 0

 , non-standard case:


0 ∗ 0 ∗
∗ 0 ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ 0

 . (32)
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For 3 bosons and 1 fermion we can pass from vT = (B,B,B, F ) to, e.g., vT = (B,F,B,B). In
these new examples the entries of the fermionic supermatrices are respectively accommodated
according to

standard case:


0 0 0 ∗
0 0 0 ∗
0 0 0 ∗
∗ ∗ ∗ 0

 , non-standard case:


0 ∗ 0 0
∗ 0 ∗ ∗
0 ∗ 0 0
0 ∗ 0 0

 . (33)

The key issue to notice is that the raising operator f †11 becomes fermionic in the non-standard
decompositions above. This implies that the Pauli exclusion principle applies to the 0-energy
particles created by f †11. In the standard cases these particles are bosons. This affects the
degeneracy of the energy levels of the multi-particle Hamiltonian producing inequivalent results.

Similarly, a non-standard decomposition of a Z2 × Z2-graded Lie superalgebra is realized,
e.g., by accommodating the 00, 11, 10, 01 sectors according to

M00 =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 , M10 =


0 ∗ 0 0
∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0

 ,

M11 =


0 0 ∗ 0
0 0 0 ∗
∗ 0 0 0
0 ∗ 0 0

 , M01 =


0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0
∗ 0 0 0

 . (34)

Contrary to the standard decomposition (A.8), in this case the 0-energy particles created by

f †11 are no longer exotic bosons, but parafermions.
On the other hand in the parabosonic case induced by the Z2 × Z2-graded Lie algebra, the

non-standard decomposition above does not produce a inequivalent quantization with respect
to the standard decomposition. This is so because, as already recalled, for parabosons the three
sectors 11, 10 and 01 share the same properties and can be mutually interchanged.

A careful inspection shows that in three cases the non-standard decompositions for the
Hamiltonian Hosc are not equivalent to the standard ones. Nevertheless, in all three cases these
decompositions can be recovered from their corresponding standard ones after changing the
Hamiltonian Hosc = a†a · I4 + Λ, with Λ = diag(0, 0, 1, 1), into the permuted Hamiltonian Hosc

given by

Hosc = a†a · I4 + Λ, with Λ = diag(0, 1, 1, 0). (35)

These three non-standard multi-particle quantizations are denoted as (3|1)ns, (2|2)ns, Z2
2-PFns.

Their corresponding graded algebras are

(3|1)ns : a2 for Hosc 7→ Hosc,

(2|2)ns : a3 for Hosc 7→ Hosc,

Z2
2-PFns : a5 for Hosc 7→ Hosc. (36)

4.3 The 2-particle Hilbert spaces

The orthonormal vectors spanning the 2-particle Hilbert spaces, from (23,26,27), have the form

|m; I〉 =
1√
m!

(
i√
2

(∂x + ∂y − x− y)

)m
· (π−

1
2 e−

1
2
(x2+y2))⊗ VI , (37)
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where VI are 16-component constant orthonormal vectors which can be expressed in the vj basis
(we recall that vj has entry 1 in the j-th position and 0 otherwise).

The 2-particle Hilbert spaces induced by the 6 standard gradings will be denoted as H(2)
k ; the

suffix k = 1, 2, . . . , 6 denotes the respective (30) graded algebras. The finite dimensional Hilbert

spaces H(2)
k ⊂ H

(2)
k are spanned by the VI vectors by taking m = 0 (the gaussian factor can be

dropped for convenience). The spanning vectors VI entering the six standard quantizations (31)
are read from the following table:

(4|0) (3|1) (2|2) (1|3) Z2
2-PF Z2

2-PB

V1 = v1 X X X X X X

V2 = v6 X X X X X

V3 = v11 X X X

V4 = v16 X X

V5 = 1√
2
(v2 + v5) X X X X X X

V6 = 1√
2
(v3 + v9) X X X X X X

V7 = 1√
2
(v4 + v13) X X X X X X

V8 = 1√
2
(v7 + v10) X X X

V9 = 1√
2
(v7 − v10) X X X

V10 = 1√
2
(v8 + v14) X X X

V11 = 1√
2
(v8 − v14) X X X

V12 = 1√
2
(v12 + v15) X X X

V13 = 1√
2
(v12 − v15) X X X

Table 1: Spanning vectors of the standard finite dimensional 2-particle Hilbert spaces of the
4 × 4 matrix oscillator. The first four columns correspond to supermatrices: (4|0), i.e. the
bosonic case, (3|1), (2|2), i.e. the supersymmetric case, and (1|3). The last two columns
present the Z2 × Z2-graded Hilbert spaces for parafermions (Z2

2-PF) and parabosons (Z2
2-PB).

The “X” denotes the presence of the vector.

One can observe, in certain cases, the absence of the vectors V2, V3, V4. It is a consequence of
the Pauli exclusion principle for (para)fermions; this principle is encoded [6, 7] in the language
of the coproduct.

The finite-dimensional Hilbert spaces H(2)
k have dimensions dk given by

d1 = d6 = 10, d2 = 9, d3 = d5 = 8, d4 = 7. (38)

The six 2-particle Hilbert spaces H(2)
k recovered from the standard decompositions are therefore

spanned by the vectors |m; I〉, with m = 0, 1, 2, . . ., while I is restricted according to

H(2)
1 : |m; I〉 for m ∈ N0 and I = 1, 2, 3, 4, 5, 6, 7, 8, 10, 12;

H(2)
2 : |m; I〉 for m ∈ N0 and I = 1, 2, 3, 5, 6, 7, 8, 10, 12;

H(2)
3 : |m; I〉 for m ∈ N0 and I = 1, 2, 5, 6, 7, 8, 10, 13;

H(2)
4 : |m; I〉 for m ∈ N0 and I = 1, 5, 6, 7, 9, 11, 13;

H(2)
5 : |m; I〉 for m ∈ N0 and I = 1, 2, 5, 6, 7, 9, 11, 12;

H(2)
6 : |m; I〉 for m ∈ N0 and I = 1, 2, 3, 4, 5, 6, 7, 9, 11, 13. (39)
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One should note, see (36), that the three 2-particle Hilbert spaces recovered from the non-
standard decompositions coincide with the associated standard Hilbert spaces. The difference

is encoded in the modified Hamiltonian, H
(2)
osc 7→ H

(2)
osc, with the latter given in (35). Therefore,

we have

H(2)
2 for (3|1)ns, H(2)

3 for (2|2)ns, H(2)
5 for Z2

2-PFns. (40)

Any vector |m; I〉 is an energy eigenstate.
For the standard quantizations the energy eigenvalues Em,I are read from

H
(2)
osc|m; I〉 = Em,I |m; I〉, with Em,I = m+ SI

(S1 = S2 = S5 = 0, S6 = S7 = S8 = S9 = S10 = S11 = 1, S3 = S4 = S12 = S13 = 2).

(41)

For the non-standard quantizations the energy eigenvalues Em,I are read from

H
(2)
osc|m; I〉 = Em,I |m; I〉, with Em,I = m+ SI

(S1 = S7 = 0, S5 = S6 = S10 = S11 = S12 = S13 = 1, S2 = S3 = S8 = S9 = 2). (42)

For all quantizations (standard and non-standard) the spectrum of the energy eigenvalues
En is given by the non-negative integers 0,1,2,. . . :

En = n ∈ N0. (43)

We now discuss the degeneracy of the energy levels and the inequivalence of the multi-particle
quantizations.

4.4 Degeneracy of the energy levels

The degeneracy of a energy level depends on the given quantization and is obtained from (41,42).
The results are summarized in the table below which presents the nine cases (1 to 6 corresponding
to the standard decompositions, 7, 8 and 9 to the non-standard ones). For any given quantization
the degeneracy of its energy levels n = 2, 3, 4, . . . is the same. We have

E = 0 E = 1 E = n ≥ 2

1∗- (4|0) 3 7 10

2 - (3|1) 3 7 9

3†- (2|2) 3 7 8

4 - (1|3) 2 6 7

5†- Z2
2-PF 3 7 8

6∗- Z2
2-PB 3 7 10

7 - (3|1)ns 2 6 9

8‡ - (2|2)ns 2 6 8

9‡ - Z2
2-PFns 2 6 8

Table 2: The numbers give the degeneracy of the 2-particle energy eigenvalues for each one
of the nine quantizations of the 4×4 quantum oscillator. Different numbers indicate inequivalent
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quantizations. The inequivalence of the quantizations 1 versus 6, 3 versus 5 and 8 versus 9 cannot
be read from this table; it requires a subtler analysis of other observables.

The final proof of the inequivalence of the nine quantizations is given in Section 5 with
the construction of the observables discriminating the cases 1 versus 6 and 8 versus 9. The
observables discriminating the cases 3 versus 5 are found in [6].

Remark: due to the coassociativity of the coproduct, see (A.11), nine inequivalent M -
particle graded Hilbert spaces are recovered for any integer number M > 1. The formulas
are straightforward generalizations of the 2-particle construction. In [6] inequivalent 3-particle
Hilbert spaces were presented for the supersymmetric and (standard) parafermionic gradings.

5 Discriminating 2-particle observables

In (39) we presented the 2-particle Hilbert spaces H(2)
k (for k = 1, 2, . . . , 6) which were used to

derive the nine (standard and non-standard) quantizations entering Table 2. We present here
the proof that these nine quantizations are all inequivalent.
Since the construction of the observables which discriminate the parafermionic case Z2

2-PF from
the supersymmetric case (2|2) was given in [6], what is left here is to present:
i) observables which discriminate the parabosonic case Z2

2-PB from the bosonic case (4|0),
ii) at least one observable which discriminates the non-standard cases Z2

2-PFns versus (2|2)ns.
Let’s proceed.

5.1 Discriminating Z2 × Z2-graded parabosons from bosons

The 2-particle observables discriminating parabosons from bosons should satisfy the following
requirements:

i) they should apply to both bosonic and parabosonic Hilbert spaces,
ii) they should be hermitian and
iii) they should belong to the 00-graded sector of the parabosonic theory in order to have real
(00-graded) eigenvalues.

The following set of 2-particle observables, constructed in terms of the exchange operators
X11, X10, X01 introduced in (20), satisfy the above three criteria.

We have

Xs = X10 ⊗X10, Xt = X01 ⊗X01, Xu = X11 ⊗X11, X∗ = Xs +Xt +Xu (44)

and

Ys = (I4 ⊗X11 +X11 ⊗ I4)(I4 ⊗X10 +X10 ⊗ I4)(I4 ⊗X01 +X01 ⊗ I4) +

(I4 ⊗X01 +X01 ⊗ I4)(I4 ⊗X10 +X10 ⊗ I4)(I4 ⊗X11 +X11 ⊗ I4),
Yt = (I4 ⊗X10 +X10 ⊗ I4)(I4 ⊗X01 +X01 ⊗ I4)(I4 ⊗X11 +X11 ⊗ I4) +

(I4 ⊗X11 +X11 ⊗ I4)(I4 ⊗X01 +X01 ⊗ I4)(I4 ⊗X10 +X10 ⊗ I4),
Yu = (I4 ⊗X01 +X01 ⊗ I4)(I4 ⊗X11 +X11 ⊗ I4)(I4 ⊗X10 +X10 ⊗ I4) +

(I4 ⊗X10 +X10 ⊗ I4)(I4 ⊗X11 +X11 ⊗ I4)(I4 ⊗X01 +X01 ⊗ I4),
Y∗ = Ys + Yt + Yu. (45)
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Under the S3 permutations which interchange the parabosonic sectors 11, 10, 01, the operators
Xs, Xt (Ys, Yt) are mapped into Xu (Yu), while X∗ and Y∗ are S3-invariant. Without loss of
generality we can therefore consider the four operators Xu, X∗, Yu, Y∗. Their 16 × 16 matrix
representations are given in Appendix B.

For the purpose of making easier the comparison of the bosonic versus parabosonic Hilbert
spaces it is convenient to rename the respective vectors VI entering Table 1.

They will be expressed in terms of a sign ε (ε = +1 for bosons, ε = −1 for parabosons); the

corresponding finite-dimensional Hilbert spaces will be denoted as H
(2)
ε . We set

U00,A = v1,
U00,B = v6, U11 = 1√

2
(v2 + v5), W11,ε = 1√

2
(v12 + εv15),

U00,C = v11, U10 = 1√
2
(v3 + v9), W10,ε = 1√

2
(v8 + εv14),

U00,D = v16, U01 = 1√
2
(v4 + v13), W01,ε = 1√

2
(v7 + εv10).

(46)

The suffix denotes the Z2 × Z2-grading of the vector in the parabosonic case.
The difference between the two Hilbert spaces should be spotted by measuring the subspaces

spanned by W11,ε,W10,ε,W01,ε and should appear as ε-dependent eigenvalues.
The eigenvectors of Xu with nonvanishing eigenvalues are U± and W11,ε:

XuU± = ±U± for U± = U00,C ± U00,D, XuW11,ε = εW11,ε. (47)

The eigenvectors of X∗ with their respective nonvanishing eigenvalues are

X∗(U00,B − U00,C) = −(U00,B − U00,C), X∗W11,ε = εW11,ε

X∗(U00,C − U00,D) = −(U00,C − U00,D), X∗W10,ε = εW10,ε

X∗(U00,D − U00,B) = −(U00,D − U00,B), X∗W01,ε = εW01,ε.
(48)

The presence of the ε eigenvalues in (47,48) proves that, by performing Xu, X∗ measurements,
one can determine whether a system under consideration is composed by ordinary bosons or by
Z2 × Z2-graded parabosons.

A basis of eigenvectors with respective eigenvalues for Y∗ is given by

Y∗U00,A = 0,

Y∗(U00,B + U00,C + U00,D) = (12 + 4ε)(U00,B + U00,C + U00,D),

Y∗(U00,B − U00,C) = −2ε(U00,B − U00,C),

Y∗(U00,B − U00,D) = −2ε(U00,B − U00,D),

Y∗U11 = 2U11,

Y∗U10 = 2U10,

Y∗U01 = 2U01,

Y∗W11,ε = (6 + 4ε)W11,ε,

Y∗W10,ε = (6 + 4ε)W10,ε,

Y∗W01,ε = (6 + 4ε)W01,ε. (49)

Unlike X∗, the operator Y∗ is ε-dependent, see formula (B.2), due to the braiding properties
of the tensor products in (45). This observation explains the presence of the ε sign in the
eigenvalues obtained from the U00,• vectors.
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The Yu eigenvectors and eigenvalues are

YuU00,A = 0,

YuU11 = 2U11,

YuU10 = 0,

YuU01 = 0,

YuW11,ε = 2W11,ε,

YuW10,ε = (2 + 2ε)W10,ε,

YuW01,ε = (2 + 2ε)W01,ε,

Yu(U00,C − U00,D) = −2ε(U00,C − U00,D) (50)

and, for ε = 1,

Yu(U00,B +
1

2
U00,C +

1

2
U00,D) = 6(U00,B +

1

2
U00,C +

1

2
U00,D),

Yu(U00,B − U00,C − U00,D) = 0, (51)

while, for ε = −1, one has

Yu

(
U00,B +

1

4
(−3±

√
17)(U00,C + U00,D)

)
= (1±

√
17)

(
U00,B +

1

4
(−3±

√
17)(U00,C + U00,D)

)
.

(52)

5.2 Discriminating two non-standard quantizations

The matrix operator Xu is an observable for both Hilbert spaces giving the non-standard cases
Z2
2-PFns and (2|2)ns. We rename the vectors entering the finite-dimensional Hilbert spaces as

V 1 = v1, V 2 = v6,

V 3 = 1√
2
(v2 + v5), V 4 = 1√

2
(v3 + v9), V 5 = 1√

2
(v4 + v13),

V 6,ε = 1√
2
(v7 + δv10), V 7,δ = 1√

2
(v8 + δv14), V 8,δ = 1√

2
(v12 − δv15).

(53)

The sign δ = ±1 corresponds to the Z2
2-PFns case for δ = −1 and to the (2|2)ns case for δ = 1.

The Xu eigenvalues are read from

XuV J = 0 (for J = 1, 2, 3, 4, 5),

XuV 6,δ = 0,

XuV 7,δ = 0,

XuV 8,δ = δV 8,δ. (54)

Due to the presence of the δ eigenvalue in the last equation, a measurement of Xu allows to
discriminate the two non-standard cases.

This concludes the proof of the inequivalence of the nine quantizations presented in Table 2.
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6 Conclusions

This paper presents the 9 inequivalent multi-particle quantizations of the 4 × 4 matrix oscil-
lator given in (8). Each quantization is recovered from different Z2- and Z2 × Z2- gradings
(and associated statistics) which are consistently imposed on the component particles. 6 of the
quantizations are obtained from the standard block-decompositions of supermatrices, 3 of them
from the non-standard ones.

This analysis completes the multi-particle quantizations discussed in [6] for just three cases
(bosonic, supersymmetric and the standard version of Z2 × Z2-graded parafermions).

The extra quantizations presented in the paper include, in particular, a non-standard ver-
sion of Z2 × Z2-graded parafermions and the Z2 × Z2-graded parabosonic statistics induced by
Z2 × Z2-graded Lie algebras; unlike the parafermionic statistics induced by Z2 × Z2-graded Lie
superalgebras, see [20, 21, 22, 23, 24, 25, 6], this parastatistics has not been previously considered
in the literature.

Furthermore, we showed that suitable measurements of observables allow to distinguish if a
multi-particle system is composed by Z2 × Z2-graded parabosons or by ordinary bosons. This
result gives to the notion of Z2 × Z2-graded parabosons a legitimate status in physics, proving
that it is not just a mathematical artifact void of physically measurable consequences.

A next step, in this line of research, would involve the construction of phenomenological
Z2×Z2-graded parabosonic models which could be put to experimental test. A possible scenario
could apply to emergent particles in condensed matter. Concerning model-building, a general
framework to construct Z2×Z2-graded parafermionic models was presented in [4] for the classical
case and [16] for the quantum case. As pointed out in [5], an extension of the method allows to
derive Z2 × Z2-graded parabosonic models.

On a separate line, the inequivalent multi-particle quantizations induced by gradings shed
some light on open issues regarding the quantization, as discussed in [33] both from a historical
and an actual perspective.

Appendix A: Relevant formulas for graded (super)algebras

In order to make the paper self-consistent we collect the relevant formulas concerning

i) Z2-graded Lie superalgebras,

ii) Z2 × Z2-graded Lie superalgebras and

iii) Z2 × Z2-graded Lie algebras. (A.1)

As recalled in the text they induce inequivalent multi-particle quantizations of the 4× 4 matrix
harmonic oscillator (8). Following [5] and [6] we use a compact notation to describe, at once, the
three cases. Ordinary (bosonic) Lie algebras can be assumed to be Z2-graded Lie superalgebras
with empty odd (fermionic) sector. This allows, e. g., to identify the bosonic case listed in Table
1 with (4|0) supermatrices.

Depending on the case under consideration, a graded algebra g is decomposed into

i) : g = g0 ⊕ g1,

ii) and iii) : g = g00 ⊕ g01 ⊕ g10 ⊕ g11. (A.2)

The even (0) and odd (1) generators in i) are bosonic (fermionic). The four sectors of ii) and
iii) are described by 2 bits. The grading of a generator in i) is given by ~α ≡ α ∈ {0, 1}. The
grading of a generator in ii) and iii) is given by the pair ~α = (α1, α2), with α1,2 ∈ {0, 1}.
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Three respective inner products, with addition mod 2, are defined:

i) : ~α · ~β := αβ ∈ {0, 1},
ii) : ~α · ~β := α1β1 + α2β2 ∈ {0, 1},
iii) : ~α · ~β := α1β2 − α2β1 ∈ {0, 1}. (A.3)

The graded algebra g is endowed with the operation (·, ·) : g× g→ g.
Let a, b, c ∈ g be three generators whose respective gradings are ~α, ~β,~γ. The bracket (·, ·) is

defined as

(a, b) := ab− (−1)~α·
~βba, (A.4)

resulting in either commutators or anticommutators.
The operation satisfies the graded Jacobi identities

(−1)~γ·~α(a, (b, c)) + (−1)~α·
~β(b, (c, a)) + (−1)

~β·~γ(c, (a, b)) = 0. (A.5)

The grading deg[(a, b)] of the generator (a, b) is the mod 2 sum

deg[(a, b)] = ~α+ ~β. (A.6)

Remark: in the Z2 × Z2-graded superalgebra case ii) the only sectors which are on equal
footing and can be interchanged are 10 and 01. In the Z2×Z2-graded algebra case iii) the three
sectors 11, 10, 01 are on equal footing and can be interchanged. In Sections 4 and 5 we made
use of this observation.

A graded algebra g is represented on a graded vector space V such that

i) : V = V0 ⊕ V1; ii) and iii) : V = V00 ⊕ V01 ⊕ V10 ⊕ V11. (A.7)

The grading of a vector v ∈ V is denoted with ~ν. Depending on the case, it is either ~ν ≡ ν ∈ {0, 1}
or ~ν = (ν1, ν2) with ν1,2 ∈ {0, 1}. A generator a ∈ g (of grading ~α) is represented by the operator
â ∈ End(V). The compatibility of the gradings requires that the grading ~ν ′ of the transformed
vector v′ = av ∈ V is ~ν ′ = ~α+ ~ν. The sum is taken mod 2.

Without loss of generality, see the discussion in Section 4, we can assume the Z2-graded
matrices to be split into block-diagonal even and odd sectors. For the Z2 × Z2-graded (su-
per)algebras, also without loss of generality, the 4 × 4 graded matrices can be decomposed
according to

M00 =


m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

 ∈ g00, M11 =


0 m5 0 0
m6 0 0 0
0 0 0 m7

0 0 m8 0

 ∈ g11,

M10 =


0 0 m9 0
0 0 0 m10

m11 0 0 0
0 m12 0 0

 ∈ g10, M01 =


0 0 0 m13

0 0 m14 0
0 m15 0 0
m16 0 0 0

 ∈ g01,

(A.8)

where the entries m1,m2, . . . ,m16 are either constant numbers or, as in (4), operators.
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By assuming this convention, the graded vector space V is decomposed according to

v00 =


v
0
0
0

 ∈ V00, v11 =


0
v
0
0

 ∈ V11, v10 =


0
0
v
0

 ∈ V10, v01 =


0
0
0
v

 ∈ V01.
(A.9)

The construction of the multi-particle states is based, see [6, 7], on the notions of coproduct
and braided tensor product as applied in the context of Hopf algebras. For all three cases i),
ii), iii) in (A.1) the Universal Enveloping Algebra U ≡ U(g) of a graded algebra g is endowed
with a Hopf algebra structure. Definition and properties of Hopf algebras can be found in [7].
We limit here to recall the properties that we have used in the main text.

The coproduct ∆ is a map

∆ : U → U ⊗ U (A.10)

which satisfies the coassociativity property

(∆⊗ id)∆(U) = (id⊗∆)∆(U). (A.11)

The action ∆(u) of the coproduct on a generic element u ∈ U can be recovered from the action
on the identity 1 ∈ U(g), the action on a primitive element g ∈ g and from the comultiplication.
We have

∆(1) = 1⊗ 1,

∆(g) = 1⊗ g + g ⊗ 1,

∆(u1u2) = ∆(u1) ·∆(u2). (A.12)

Concerning the braided tensor product, let a, b, c, d ∈ g. We assume, as before, the grading
of b, c to be respectively given by ~β,~γ. The braiding of two tensor spaces is expressed by the
formula

(a⊗ b) · (c⊗ d) = (−1)
~β·~γac⊗ bd. (A.13)

For the Z2- and Z2 × Z2- gradings the braiding corresponds to the (−1)
~β·~γ sign. Its expression,

depending on case i), ii) or iii), is given in formula (A.3).

Appendix B: Representations of 2-particle observables

We present here for completeness the 16 × 16 constant hermitian matrices which realize
the 2-particle observables Xu, X∗, Yu, Y∗ introduced in Section 5, formulas (44) and (45).
These observables allow to discriminate whether the system under consideration is composed by
ordinary bosons or by Z2 × Z2-graded parabosons.

We have
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Xu =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0



,

X∗ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0



(B.1)
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and

Yu =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 2 0 0 0 0 2
0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2ε
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2ε 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 2ε 0 0 0 0
0 0 0 0 0 2 0 0 0 0 2ε 0 0 0 0 0



,

Y∗ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 4 + 2ε 0 0 0 0 4 + 2ε
0 0 0 0 0 0 4 0 0 4 + 2ε 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 4 + 2ε 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 4 + 2ε 0 0 4 0 0 0 0 0 0
0 0 0 0 0 4 + 2ε 0 0 0 0 4 0 0 0 0 4 + 2ε
0 0 0 0 0 0 0 0 0 0 0 4 0 0 4 + 2ε 0

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 4 + 2ε 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 4 + 2ε 0 0 4 0
0 0 0 0 0 4 + 2ε 0 0 0 0 4 + 2ε 0 0 0 0 4



.

(B.2)

The ε sign entering the (B.2) matrices takes the value ε = +1 in the bosonic case and ε = −1
in the Z2 × Z2-graded parabosonic case. Unlike Xu, X∗, the operators Yu, Y∗ are ε-dependent.
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