

CBPF - CENTRO BRASILEIRO DE PESQUISAS FÍSICAS Rio de Janeiro

Notas de Física

CBPF-NF-009/20 December 2020

Um colorido tour pelo R^4

A.F.F. Teixeira

Um colorido tour pelo R^4

A.F.F. Teixeira

Centro Brasileiro de Pesquisas Físicas 22290–180 Rio de Janeiro–RJ, Brasil; teixeira@cbpf.br

8 de Dezembro de 2020

Resumo

Percorre-se o 4–espaço vetorial real usando algumas ferramentas novas ou pouco conhecidas pelos físicos, tais como o símbolo ∞^n e um modelo 3–dimensional para os subespaços. Privilegia-se uma direção e se cria um código de cores para os vetores, facilitando a percepção dos subespaços bi– e tri–dimensionais. Constroi-se tabelas pormenorizadas de pertinências e normalidades entre todos os subespaços.

Palavras-chave: espaçotempo, subespaços, cones de luz.

- - - - -

The real vector 4–space is visited using some tools, new or little known by physicists, such as the symbol ∞^n and a 3–dimensional model for the subspaces. A direction is priviledged, allowing a color code for the vectors and easy perception of subspaces with 2 and 3 dimensions. Detailed tables of inclusions and normalities among all subspaces are displayed.

Key words: spacetime, subspaces, light cones.

1 Introdução

Navegaremos pelo quadriespaço vetorial real R^4 . Ele, seus subespaços, e seus cones de luz são importantes para as relatividades especial e geral. Ao que saibamos, alguns tópicos desta exposição são novos na literatura: o símbolo ∞^n (Seção 4), um prático modelo tridimensional para os subespaços (Seção 7), e tabelas detalhadas de pertinências e normalidades entre subespaços (Seções 8 e 9).

2 Ângulo entre quadrivetores

Para o R^4 , escolhemos uma base $\{\tilde{t}; \, \tilde{x}, \, \tilde{y}, \, \tilde{z}\}$, na qual um vetor \tilde{a} terá componentes $\tilde{a} := [a_0; \, a_1, \, a_2, \, a_3]$. Definimos o produto escalar entre dois vetores, e o módulo de um vetor, como

$$\tilde{a} \cdot \tilde{b} := a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3, \quad |\tilde{a}| := \sqrt{\tilde{a} \cdot \tilde{a}}.$$
 (1)

O ângulo φ entre os vetores $\tilde{a}\,$ e $\tilde{b}\,$ é obtido de

$$\tilde{a} \cdot \tilde{b} = |\tilde{a}| |\tilde{b}| \cos \varphi, \quad 0^{\circ} \le \varphi \le 180^{\circ};$$
 (2)

diremos que \tilde{a} e \tilde{b} são (mutuamente) normais se $\tilde{a} \cdot \tilde{b} = 0$, e diremos que \tilde{a} é unitário se $|\tilde{a}| = 1$; em particular, os quatro vetores base são normais e unitários.

Chamaremos direção a, a reta não-orientada que contenha o vetor \tilde{a} . A direção t será privilegiada, e denominada temporal. As direções que formem com t ângulo

 $\eta<45^{\rm o},$ ou = 45° ou > 45°, serão ditas tipo tempo $\,\tau\,,$ ou tipo luz $\,\lambda\,,$ ou tipo espaço $\,\sigma\,,$ respectivamente.

Correspondentemente, teremos vetores tipo tempo $\tilde{\tau}$, ou luz $\tilde{\lambda}$ ou espaço $\tilde{\sigma}$. Esta classificação é importante na cinemática relativista, onde velocidades de objetos são representadas por vetores $\tilde{\tau}$, enquanto velocidades iguais ou maiores que c são representadas por vetores $\tilde{\lambda}$ e $\tilde{\sigma}$, respectivamente.

Com frequência usaremos a decomposição $\tilde{a} := [a_0; \vec{a}]$, e definimos

$$\vec{a} \cdot \vec{b} := a_1 b_1 + a_2 b_2 + a_3 b_3, \quad |\vec{a}| := \sqrt{\vec{a} \cdot \vec{a}}.$$
 (3)

Definimos também um índice, temporalidade $-1 \le T \le 1$, de um dado vetor \tilde{a} :

$$T := \frac{|a_0| - |\vec{a}|}{|a_0| + |\vec{a}|}.$$
(4)

Vetores e direções $\{\tau, \lambda, \sigma\}$ têm T {positivo, zero, negativo}, respectivamente; em particular, a direção t tem a máxima temporalidade, 1. Note que (4) é invariante sob rotações dos eixos $\{x, y, z\}$.

A normalidade entre vetores tipo luz pode nos surpreender. Com efeito, sejam $\tilde{\lambda_1} := k_1[1; \vec{\lambda_1}]$ e $\tilde{\lambda_2} := k_2[1; \vec{\lambda_2}]$ os dois vetores, com $|\vec{\lambda_1}| = |\vec{\lambda_2}| = 1$. Ora, $\tilde{\lambda_1} \cdot \tilde{\lambda_2} = 0$ implica $1 + \vec{\lambda_1} \cdot \vec{\lambda_2} = 0$, portanto $\angle(\vec{\lambda_1}, \vec{\lambda_2}) = 180^\circ$. Concluímos que, se $\tilde{\lambda_1}$ for normal a $\tilde{\lambda_2}$, suas partes espaciais $k_1\vec{\lambda_1}$ e $k_2\vec{\lambda_2}$ serão paralelas ou antiparalelas.

Somente direções σ podem ser normais a uma τ . [Com efeito, mediante apropriada rotação dos eixos $\{x,y,z\}$ toda direção τ pode ter forma $\tau:=[\cos\eta;\sin\eta;0,0]$ com $0^{\circ} \leq \eta < 45^{\circ}$; uma direção $\delta:=[a;b,c,d]$ será normal a τ se $a\cos\eta+b\sin\eta=0$, portanto $\delta=[-b\tan\eta;b,c,d]$, que é tipo espaço.] De modo semelhante se mostra que somente direções λ e σ podem ser normais a uma λ , e que direções de quaisquer tipos podem ser normais a uma σ .

E fácil perceber que todo vetor pode ser decomposto em diferentes somas de dois outros vetores, de quaisquer tipos, iguais ou diferentes. Mas temos uma provável surpresa para você: em decomposições $\tilde{\lambda_3} = \tilde{\lambda_1} + \tilde{\lambda_2}$, os três vetores tipo luz são necessariamente colineares. [Com efeito, sejam $\tilde{\lambda_1} := k_1[1; \vec{\lambda_1}]$ e $\tilde{\lambda_2} := k_2[1; \vec{\lambda_2}]$, com $|\vec{\lambda_1}| = 1$ e $|\vec{\lambda_2}| = 1$. Então $\tilde{\lambda_3} = [k_1 + k_2; k_1\vec{\lambda_1} + k_2\vec{\lambda_2}]$, que por ser tipo luz implica $(k_1 + k_2)^2 = |k_1\vec{\lambda_1} + k_2\vec{\lambda_2}|^2$, ou seja, $1 = \vec{\lambda_1} \cdot \vec{\lambda_2}$; portanto $\vec{\lambda_1} = \vec{\lambda_2}$, implicando $\tilde{\lambda_1}$ e $\tilde{\lambda_2}$ serem colineares, no que $\tilde{\lambda_3}$ os acompanhará.]

3 Colorindo as direções

Para facilitar a visualização dos subespaços do R^4 , vamos colorir suas direções como num arco-íris. A direção t (T=1) será azul, as λ (T=0) serão amarelas, e as intermediárias τ serão verdes com tonalidades variando do azul ao amarelo. Completando, as direções σ terão cor laranja, com nuances entre amarelo e vermelho (T=-1). Veja a Figura 1.

4 O símbolo ∞^n

O espaço R^4 contém uma infinidade de vetores, cada um sendo especificado por 4 parâmetros com variação contínua. Então, loosely speaking, diremos que R^4 contém ∞^4 vetores. Embora esta nomenclatura seja matematicamente nonsense, ela se revelará muito prática, e será fartamente usada neste texto. Para ajudar você a se acostumar com ela, assertamos que o R^4 contém ∞^3 direções τ , e ∞^2 direções λ , e ∞^3 direções σ .

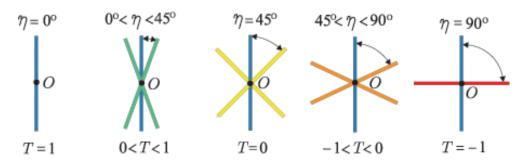


Figura 1: Direções no R^4 , estendendo-se até o infinito radial. Note que $T = \tan(45^{\circ} - \eta)$.

A propósito, talvez você já se tenha perguntado se no R^4 existem mais vetores $\tilde{\tau}$ que $\tilde{\sigma}$, ou o contrário; bem, uns cálculos de volumes quadridimensonais indicam que há mais direções σ que τ , na razão $(\pi + 2)/(\pi - 2) \approx 9/2$.

5 Os subespaços R^2

Constroi-se um subespaço bidimensional R^2 selecionando 2 vetores não-colineares do R^4 , \tilde{a} e \tilde{b} , e coletando os vetores $\alpha \tilde{a} + \beta \tilde{b}$, com $-\infty < \{\alpha, \beta\} < \infty$. Subespaços bidimensionais se apresentam como planos passando pela origem O do R^4 ; então aqui abreviamos a longa expressão 'subespaço vetorial bidimensional real' para *plano*, simplesmente.

Em todo plano (exceto naqueles com T=-1), a direção angularmente mais próxima da direção t é única, e será chamada eixo do plano. Conforme o ângulo η entre o eixo e t seja <, = ou > 45°, teremos plano tipo tempo τ^2 , tipo luz λ^2 ou tipo espaço σ^2 , respectivamente. Chamaremos η de ângulo do plano, e denotaremos R_T^2 um plano cujo eixo tenha temporalidade T. Os planos R_{-1}^2 não têm direção preferencial, todas as suas direções têm T=-1.

A Figura 2 expõe 5 planos paradigmáticos. Ali você vê que os τ^2 contêm uma infinidade ∞^1 de direções τ e σ , e somente 2 direções λ . Um λ^2 obviamente não contém direções τ ; ele contém 1 única direção λ (seu eixo) e uma infinidade ∞^1 de direções σ . Completando, um σ^2 contém ∞^1 direções somente σ .

5.1 Determinação do tipo de um plano

Esta dedução é bem conhecida na literatura; reproduzimo-la aqui por completeza, e por ser simples. O tipo de um plano pode ser descoberto a partir de qualquer par $\{\tilde{a}, \tilde{b}\}$ de seus vetores, não-colineares, bastando calcular-se a quantidade de direções tipo luz do plano. Com efeito, suponha que a direção $[a_0 + mb_0; \vec{a} + m\vec{b}]$ seja tipo luz, portanto obedeça

$$(a_0 + mb_0)^2 = |\vec{a} + m\vec{b}|^2.$$
 (5)

Escrevamos (5) do modo $Am^2 + Bm + C = 0$, onde

$$A := (b_0)^2 - |\vec{b}|^2, \quad B := 2(a_0b_0 - \vec{a} \cdot \vec{b}), \quad C := (a_0)^2 - |\vec{a}|^2,$$
 (6)

e busquemos a quantidade de diferentes soluções reais para m naquela equação. Essa quantidade depende somente do sinal do discriminante $\Delta := B^2 - 4AC$; se $\Delta > 0$, existirão 2 valores reais diferentes para m que satisfaçam (5), e teremos um τ^2 . Se porém $\Delta = 0$, haverá somente 1 solução distinta real para m, e teremos um λ^2 . Finalmente, se $\Delta < 0$, não haverá solução real para m, e ocorrerá um σ^2 .

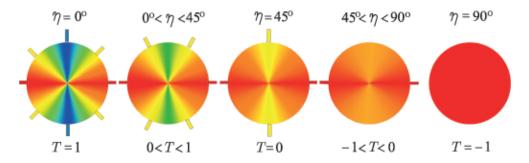


Figura 2: Os cinco planos paradigmáticos, estendendo-se até o infinito radial. No disco T=1 somente 1 direção é azul, e no disco T=0 somente 1 direção é amarela; todo disco $T\neq -1$ contém somente 1 direção vermelha. O disco T=-1 é inteiramente vermelho.

5.2 Determinação do eixo de um plano

Seja o plano contendo os vetores não-colineares $[a_0; \vec{a}]$ e $[b_0; \vec{b}]$; a direção m do plano é

$$[a_0 + mb_0; \vec{a} + m\vec{b}].$$
 (7)

O ângulo 0º $\leq \omega \leq 90$ º entre a direção me a direção té dado por

$$\tan \omega = \frac{|\vec{a} + m\vec{b}|}{|a_0 + mb_0|},\tag{8}$$

e ω será mínimo quando m satisfizer $\partial(\tan \omega)/\partial m=0$. Alguns cálculos dão

$$m = -\frac{\vec{a} \cdot \vec{C}}{\vec{b} \cdot \vec{C}}$$
, sendo $\vec{C} := a_0 \vec{b} - b_0 \vec{a}$; (9)

este resultado, levado à (7), finalmente dá o eixo

$$[\vec{C} \cdot \vec{C} \,;\, \vec{C} \times (\vec{a} \times \vec{b})] \,. \tag{10}$$

En~passant,encontramos o valor $0^{\rm o} \leq \eta \leq 90^{\rm o}$ do ângulo do plano:

$$\tan \eta = \frac{|\vec{a} \times \vec{b}|}{|a_0 \vec{b} - b_0 \vec{a}|},\tag{11}$$

indicando que se tem $\{\tau^2, \lambda^2, \sigma^2\}$ conforme $|\vec{a} \times \vec{b}| \{<, =, >\} |a_0\vec{b} - b_0\vec{a}|$.

5.3 Normalidade entre planos

Relembre-se que dois subespaços de um mesmo espaço são ditos (mutuamente) normais quando *todas* as direções de um forem normais a todas as do outro.

No R^4 , há somente 1 plano normal a um plano dado. [Com efeito, é fácil perceber que, mediante apropriada rotação dos eixos $\{x,y,z\}$, todo plano pode ser expresso do modo $R^2 := [\alpha \cos \eta; \ \alpha \sin \eta, \ \beta, \ 0]$. E é também fácil perceber que há somente 1 plano, $R^{2'} := [\gamma \sin \eta; \ -\gamma \cos \eta, \ 0, \ \delta]$, que é normal àquele R^2 .]

Note que $T(R^{2'})=-T(R^{2})$; em consequência, no R^{4} a quantidade de τ^{2} e σ^{2} é a mesma.

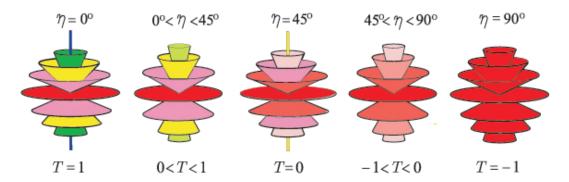


Figura 3: Os 5 triespaços paradigmáticos; os cones se estendem indefinidamente. O triespaço T=1 contém 1 única direção azul, o T=0 contém 1 única direção amarela, e o T=-1 é inteiramente vermelho. Todos contêm um plano vermelho.

5.4 Interseção de planos

No R^4 , dois planos escolhidos ao acaso geralmente têm em comum somente o vetor $\tilde{0}$; este fato será facilmente percebido na Seção 7. Para determinar uma interseção de planos, resolvemos um sistema de 4 equações lineares homogêneas para 4 variáveis.

Por exemplo, buscando $[\alpha; \beta, \alpha+\beta, \alpha-\beta] \cap [\gamma; \delta, \gamma-\delta, \delta-\gamma]$ escrevemos as equações $\alpha=\gamma, \quad \beta=\delta, \quad \alpha+\beta=\gamma-\delta, \quad \alpha-\beta=\delta-\gamma$, cuja solução é $\alpha=\beta=\gamma=\delta=0$, indicando o vetor $\tilde{0}$.

Em raros casos ocorre a interseção de planos ser uma direção. Por exemplo, buscando $[\alpha; \beta, \alpha + \beta, \alpha - \beta] \cap [\gamma; \delta, \gamma - 2\delta, \gamma + 3\delta]$ escrevemos as equações $\alpha = \gamma$, $\beta = \delta$, $\alpha + \beta = \gamma - 2\delta$, $\alpha - \beta = \gamma + 3\delta$, cuja solução é $\alpha = \gamma$, $\beta = \delta = 0$, indicando a direção [1; 0, 1, 1].

6 Subespaços R^3

Construímos um subespaço vetorial 3–dimensional real R^3 – doravante simplesmente triespaço – selecionando 3 vetores $\{\tilde{a},\,\tilde{b},\,\tilde{c}\}$ do quadriespaço R^4 , linearmente independentes, e coletando os vetores $\alpha\tilde{a}+\beta\tilde{b}+\gamma\tilde{c}$, com $-\infty<\{\alpha,\beta,\gamma\}<\infty$.

Em todo triespaço, exceto no familiar $\{x,y,z\}$ cartesiano, a direção angularmente mais próxima à direção t é única, e será dita eixo do triespaço. [A exceção $\{x,y,z\}$ não tem direção especial; todas suas ∞^2 direções são normais a t.] O ângulo η entre o eixo e t será dito ângulo do triespaço. Definimos temporalidade T de um triespaço R_T^3 como a do seu eixo.

A recíproca é verdadeira: toda direção de R^4 (exceto t) é eixo de um único triespaço. [A exceção t é eixo de ∞^2 triespaços, aqueles que contêm t e algum dos ∞^2 planos com T=-1.] Estes assertos serão visualmente constatados na Seção 7.

Classificamos os triespaços do mesmo modo que os planos: tipo tempo τ^3 , que contêm direções dos 3 tipos; tipo luz λ^3 , que contêm 1 única direção λ e ∞^2 direções σ ; e tipo espaço σ^3 , que contêm somente direções σ .

Em um triespaço, seja um cone circular cujo eixo é o do triespaço, e cujo vértice é a origem $\tilde{0}$. Cálculos mostram que todas as geratrizes do cone formam um mesmo ângulo ω com a direção t. [Este contraintuitivo fato será visualmente constatado na Seção 7.] Em consequência, todo triespaço é folheado mediante cones circulares unicoloridos, coaxiais e com vértice na origem $\tilde{0}$. Veja a Figura 3. Sendo η o ângulo do triespaço, e sendo ψ a semiabertura do cone, o ângulo ω é dado por $\cos \omega = \cos \eta \cos \psi$.

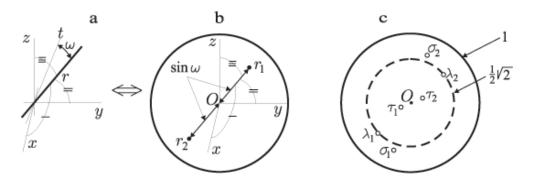


Figura 4: a: No espaço R^4 com eixos $\{t; x, y, z\}$, veja a direção r formando ângulo $0^{\circ} \le \omega \le 90^{\circ}$ com a direção temporal t.

b: Na bola B^3 , com coordenadas $\{x,y,z\}$ veja o par de pontos $\{r_1,r_2\}$, imagem da direção r.

c: Em uma seção máxima da bola B^3 com raio 1, veja imagens $\{\tau_1, \tau_2\}$, $\{\lambda_1, \lambda_2\}$ e $\{\sigma_1, \sigma_2\}$ de direções tipo tempo, luz e espaço, respectivamente.

6.1 Normalidade entre triespaços e direções

É fácil perceber-se que, mediante apropriada orientação dos eixos $\{x,y,z\}$, todo triespaço pode ser expresso como $R^3:=[\alpha\cos\eta;\,\alpha\sin\eta,\,\gamma,\,\delta\,]$. É também fácil mostrar-se que há somente 1 direção, $N:=\beta[\sin\eta;\,-\cos\eta,\,0,\,0\,]$, normal àquele triespaço. Concluímos que todo triespaço tem 1 única direção que lhe seja normal. E notamos que $T(N)=-T(R^3)$, implicando o ângulo η do R^3 e o ângulo da direção normal serem complementares.

Dada uma direção N, o conhecimento do triespaço R^3 que lhe é normal é muito útil, porque toda direção normal ou plano normal àquela N está contida naquele R^3 .

Note que a relação bijetiva $R_{\tau,\sigma}^1 \Leftrightarrow R_{\sigma,\tau}^3$ implica haverem no R^4 mais τ^3 que σ^3 , na razão $(\pi+2)/(\pi-2)\approx 9/2$. Implica também haverem ∞^3 triespaços τ^3 , e ∞^2 triespaços λ^3 , e outros ∞^3 triespaços σ^3 ; estas informações constam do final da última linha da Tabela 1.

7 Um modelo 3-dimensional

Nossa mente percebe sem dificuldade os espaços 1–, 2–, e 3–dimensionais. Mas ela reluta em aceitar certos fatos referentes a espaços com mais dimensões. Por exemplo, não é fácil perceber que uma dada direção no R^4 é normal a uma infinita quantidade (∞^2) de planos; ou que as geratrizes de certos cones circulares sejam equidistantes de ∞^1 diferentes direções. Dificuldades como essa serão esvaídas pelo modelo a seguir.

Vamos mapear elementos do \mathbb{R}^4 em uma bola 3-dimensional \mathbb{B}^3 com raio 1. Uma direção em \mathbb{R}^4 será mapeada como um par de pontos na \mathbb{B}^3 ; precisamente,

$$[\cos \omega; \vec{r} \sin \omega] \Rightarrow \pm \vec{r} \sin \omega, \quad 0^{\circ} \le \omega \le 90^{\circ}, \quad |\vec{r}| = 1.$$
 (12)

Diremos que o par de pontos é a imagem da direção. Veja as Figuras 4 ${\bf a}$ e 4 ${\bf b}$.

A separação entre os pontos de uma imagem cresce com o ângulo ω que a contraimagem forma com t. Assim, a imagem de uma direção τ (ou σ) é interior (ou exterior) a uma esfera 2-dimensional com raio $\sqrt{2}/2$, e a imagem de uma λ está naquela esfera. Veja a Figura 4 \mathbf{c} .

Em particular, a imagem da direção t está (duplicadamente) no centro O da bola, e a imagem de uma direção $[0; \vec{r}]$ é o par de pontos $\pm \vec{r}/|\vec{r}|$, na borda da bola.

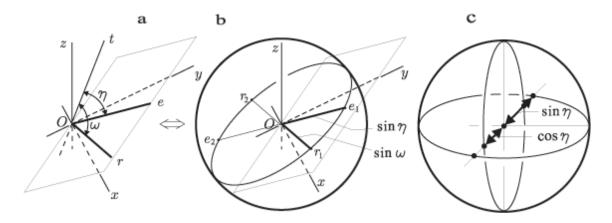


Figura 5: **a:** No \mathbb{R}^4 com eixos $\{t; x, y, z\}$, um plano com eixo e, e uma direção genérica r no plano.

b: Na bola B^3 com coordenadas $\{x, y, z\}$, os pares de pontos $\{e_1, e_2\}$ e $\{r_1, r_2\}$, imagens de e e r, respectivamente, e a elipse com semieixos $\{1, \sin \eta\}$, imagem do plano de \mathbf{a} . c: Na bola B^3 , imagens de 2 planos normais no R^4 .

A imagem de um plano do R^4 é o conjunto das imagens das direções do plano; esse conjunto forma uma elipse com semieixos $\{1, \sin \eta\}$, onde η é o ângulo do plano. Veja as Figuras 5 **a** e **b**.

Em particular, a imagem de um plano que contenha a direção t se contrai a um diâmetro da bola; precisamente, $[\alpha; \beta \vec{r}] \Rightarrow$ diâmetro (da bola, e duplicado) contendo \vec{r} .

Sabemos que, no R^4 , um plano é normal a 1 único outro plano; as imagens deles na B^3 são elipses com semieixos $\{1, \sin \eta\}$ e $\{1, \cos \eta\}$, situadas em planos geométricos perpendiculares, com os semieixos menores compartilhando uma mesma reta. Veja a Figura 5 c.

A imagem de um triespaço de R^4 é um esferoide oblato centrado na origem O, com semieixos $\{1, 1, \sin \eta\}$, onde η é o ângulo do triespaço. O par de pontos imagem do eixo e o par imagem da direção normal ao triespaço são colineares; veja a Figura 6 **a**.

Em particular, a imagem do triespaço $\{x,y,z\}$ é a esfera $|\vec{r}|=1$, a borda da bola B^3 . E a imagem do triespaço normal a $[0;\vec{r}]$ é o disco (duplicado) com raio 1 e perpendicular a \vec{r} .

Falta descrevermos as imagens dos ∞^4 cones circulares com temporalidade constante existentes no R^4 . Cada imagem é um par de círculos paralelos, cujo mesmo eixo normal contém a origem da bola B^3 ; assim, todos os pontos de um dado círculo distam igualmente $\sin \omega$ da origem de B^3 , onde ω se relaciona à temporalidade T do cone segundo $T = \tan(45^\circ - \omega)$. Veja a Figura 6 c.

Em particular, a imagem do cone de luz de um triespaço τ jaz na esfera 2–dimensional com centro na origem de B^3 , e com raio $\sqrt{2}/2$. A Figura 6 **a** deixa claro que somente 1 triespaço pode acomodar um dado cone com temporalidade constante.

8 Subespaços de um subespaço

A Tabela 1 indica quantos subespaços, e de que tipo, estão contidos em um dado subespaço do R^4 . Por exemplo, a quadrícula A indica que um plano τ^2 contém duas direções λ (indicadas $\bullet \bullet$). E a quadrícula B indica que um triespaço λ^3 contém ∞^2 planos σ^2 . Relembre-se, a notação ∞^n , usada para as quantidades infinitas, foi definida na Seção 4.

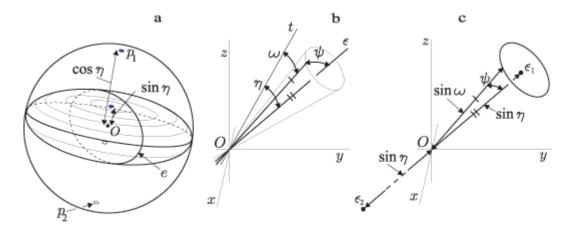


Figura 6: **a:** Na bola B^3 , a imagem de um triespaço com temporalidade $T = \tan(45^{\circ} - \eta)$ é um esferoide com semieixos $\{1, 1, \sin \eta\}$; o equador do esferoide percorre a borda da bola; a imagem de um cone com temporalidade constante, contido no triespaço, é um par de círculos diametralmente opostos no esferoide; a elipse e é imagem de um plano do triespaço, e o par de pontos $\{p_1, p_2\}$ é a imagem da direção normal ao triespaço.

b: No R^4 com eixos $\{t,x,y,z\}$, a direção ϵ é eixo de um triespaço, e de um cone circular com semiabertura ψ , contido no triespaço; todas as geratrizes do cone formam um mesmo ângulo ω com a direção t, embora a figura 4-dimensional pareça contradizê-lo; ocorre $\cos \omega = \cos \eta \cos \psi$.

c: Na bola B^3 com eixos $\{x, y, z\}$, o par de pontos $\{\epsilon_1, \epsilon_2\}$ é a imagem da direção ϵ no R^4 , e dista $\sin \eta$ da origem O; o círculo é metade da imagem do cone desenhado em **b**; todo ponto do círculo dista $\sin \omega$ da origem, sendo $\omega \geq \eta$.

9 Subespaços normais

No espaço R^4 nossa intuição às vezes tem dificuldade em descobrir quantos subespaços são normais a um dado subespaço. Mas há um fato que muito facilita essa descoberta: todos os subespaços normais a um dado subespaço estão contidos no subespaço complementar ao subespaço dado. No R^4 os pares de subespaços complementares sabidamente são $\{R_T^1,\,R_{-T}^3\}$ e $\{R_T^2,\,R_{-T}^2\}$, onde T é temporalidade.

Então, por exemplo, os possíveis subespaços normais a uma direção τ_1 são aqueles contidos no correspondente triespaço normal σ_{-1}^3 . Estes são encontrados na linha σ^3 da Tabela 1, quais sejam: o vetor zero $\tilde{0}$, uma quantidade ∞^2 de σ_{-1} , outra quantidade ∞^2 de σ_{-1}^2 , e o σ_{-1}^3 inteiro.

A Tabela 2 informa quantos subespaços são normais a um dado subespaço; no exemplo dado acima, aquelas quantidades estão na linha τ . Sem surpresa, as linhas da Tabela 2 são as mesmas da Tabela 1, na sequência inversa.

Às vezes nos perguntamos em quantos subespaços, e de quais tipos, um dado subespaço do R^4 é encontrado. A Tabela 3 dá as respostas. Note que as linhas da Tabela 3 coincidem com as da Tabela 1, na sequência inversa. Note também que as colunas da Tabela 3 coincidem com as da Tabela 2, na ordem inversa.

A Tabela 4 repete, de modo camuflado, as informações da Tabela 1; ela foi incluída para completar uma formação simétrica iniciada pelas outras Tabelas. Suas linhas são as da Tabela 1 em ordem inversa, e suas colunas são as da Tabela 3, na sequência inversa.

9

