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Abstract

In the previous paper arXiv:2003.06470 we introduced the notion of Zy x Zs-graded clas-
sical mechanics and presented a general framework to construct, in the Lagrangian setting,
the worldline sigma models invariant under a Zy x Zs-graded superalgebra. In this work
we discuss at first the classical Hamiltonian formulation of some of these models and later
present their canonical quantization.

As the simplest application of the construction we recover the Zy X Zo-graded quantum
Hamiltonian introduced by Bruce and Duplij in arXiv:1904.06975. We prove that this is
the first example of a large class of Zy x Zs-graded quantum models. We derive in particu-
lar interacting multiparticle quantum Hamiltonians given by Hermitian, matrix, differential
operators. The interacting terms appear as non-diagonal entries in the matrices.

The construction of the Noether charges, both classical and quantum, is presented. A
comprehensive discussion of the different Zs x Zo-graded symmetries possessed by the quan-
tum Hamiltonians is given.
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1 Introduction

Zo x Zo-graded (super)algebras were introduced by Rittenberg and Wyler in [1,2], while earlier
related structures were investigated in [3]. In the Rittenberg-Wyler works, which were inspired
by the construction of ordinary superalgebras, some possible physical applications to elementary
particle physics were suggested. Since then these new graded structures attracted the attention
of mathematicians [4] with a steady flow of papers devoted to their classifications [5, 6], repre-
sentations [7-9], generalizations [10]. At the beginning, on the physical side, Zs x Zs-graded
structures received limited attention (see, however, the works [11-15] and, in connection with
de Sitter supergravity, [16,17]) since the main focus was reserved to relativistic theories which
respect the spin-statistics connection.

Zs x Zs-graded superalgebras naturally lead to the broad field of parastatistics (for the
mathematical aspects of the connection with parastatistics, see [18,19]). It is therefore quite
natural to expect that they could play a role in low-dimensional (where anyons can enter the
game) and/or non-relativistic physics. This recognition is responsible for the recent surge of
interest to physical applications of Zs x Zs-graded superalgebras, with several works investigating
this problem from different sides. In [20,21] it was shown, quite unexpectedly, that Zg x Zo-
graded superalgebras are symmetries of the well-known Lévy-Leblond equations. The Zgy X Zo-
graded analogues of supersymmetric and superconformal quantum mechanics were introduced
in [22-25]. Graded structures with commuting fermions appear in dual double field theory and
mixed symmetry tensors [26-28]. In the meanwhile, mathematical properties continue to be
investigated [29-32].

This state of the art motivated us to launch a systematic investigation of the features of
Zy % Zgy-graded mechanics. In the first paper in this direction [33] we presented the general
framework for the construction of Zs X Zs-graded invariant, classical, worldline sigma models in
the Lagrangian setting. We mimicked the construction of supermechanics, that is the classical
supersymmetric mechanics, extending the tools (the D-module representations of supermulti-
plets and their application to the derivation of the invariant actions) developed in [34-36].

In this paper we proceed (adapting to our case the approach to the canonical quantization
of supermechanical models discussed in [37]) to define the classical Hamiltonian formalism and
the canonical quantization for the subclass of models in [33] derived from fundamental Zgs x Za-
graded multiplets with one propagating boson. This subclass of models, besides being simpler
to quantize, already contains what is the most relevant feature, the physics of interacting mul-
tiplets (which is tantamount to the construction of multiparticle wavefunctions). It is essential
for the aforementioned parastatistics properties of the Zy x Zo-graded superalgebras and the
physical significance of the Zg x Za-graded symmetry (more on that will be commented in the
Conclusions).

As recalled in [33], the time-dependent Zg x Zs-graded classical fields are divided into ordi-
nary bosons, exotic bosons and two classes of fermions (fermions belonging to different classes
mutually commute instead of anticommuting). These fields (anti)commute according to the
table (A.4) presented in the Appendix. The construction of the Hamiltonian framework re-
quires some delicate steps. The Poisson brackets which respect the ordering of the fields have
to be carefully introduced. Furthermore, in analogy with the construction of supersymmetric
mechanics, see [37], the existence of second-class constraints for the fermionic fields leads to
the introduction of Dirac brackets. The canonical quantization is achieved by eliminating the
auxiliary fields via algebraic equations of motion and by a suitable choice of the classical canon-
ical variables, the so-called “constant kinetic basis”. The quantum theories so derived present
hermitian, second-order differential, matrix Hamiltonians.
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The simplest application of our approach concerns a single Zy x Zo-graded multiplet. The
Zo x Zo-graded quantum mechanics introduced in [23] is recovered as the quantization of this
classical model. The analysis of the Noether charges allows understanding the different Zo x
Zo-graded symmetries possessed by this Hamiltonian. It is shown, in particular, that both
the one-dimensional Zs x Zo-graded supertranslation algebra and the Beckers-Debergh algebra
introduced in [38] (the definition of these algebras is recalled in the Appendix, see formulas (A.7)
and (A.8), respectively) are obtained by taking into account different matrix representations for
the (anti)commutators induced by the Dirac brackets.

A key point is that the single-multiplet quantum Hamiltonian is just the first (n = 1) example
of a large class of Zs X Zs-graded quantum Hamiltonians derived from the classical construction
for n interacting multiplets of type (1,2, 1)[00] (these multiplets produce n propagating ordinary
bosons, n auxiliary exotic bosons and n fermions in each one of the two classes). The n > 1
quantum Hamiltonians have interesting features that cannot be observed for n = 1. The inter-
acting terms among the multiplets appear as non-diagonal entries in their hermitian matrices.
The 8 x 8 differential matrix Hamiltonian for n = 2 and the 16 x 16 differential matrix Hamil-
tonian for n = 3 are respectively presented in formulas (146) and (157-161). They are given in
terms of the unconstrained functions f(x,y) for n = 2 and f(x,y, z) for n = 3.

The scheme of the paper is the following. In Section 2, after recalling the Lagrangian
formulation of the Zy X Zs-graded classical invariant models under consideration, we derive
their classical Noether charges. In Section 3 we present the Hamiltonian formulation of these
classical models; the “constant kinetic basis”, which paves the way for the canonical quantization,
is introduced. The canonical quantization and the derivation of the conserved quantum Noether
charges is presented in Section 4. The different graded symmetries of the simplest quantum
Hamiltonian are discussed in Section 5. In Section 6 we present invariant, Zo X Zo-graded,
interacting multiparticle quantum Hamiltonians. In the Conclusions we discuss the relevance
of the results obtained in the paper and point out various directions of future works. For
completeness, the relevant features of the Zo x Zs-graded superalgebras and of their graded
representations are recalled in the Appendix.

2 The Z, x Zs-graded classical Lagrangian mechanics

We revisit at first the simplest cases of Zo x Zs-graded classical mechanics in the Lagrangian for-
mulation. Later, at the end of the Section, we present the computation of the classical Noether
charges. For our purposes the simplest worldline models are, see [33], the Zg x Zg-graded classical
invariant actions of the (1,2, 1)[gg) and (1,2, 1)[11) multiplets. Both multiplets present one propa-
gating bosonic field, two propagating fermionic fields and one auxiliary bosonic field. In the first
multiplet the auxiliary field is the exotic boson, while in the second multiplet the auxiliary field
is the ordinary boson (see [33] for details). The four time-dependent fields of respective Zg x Zs
grading “[00], [11],[10],[01]" are accommodated into the multiplet (z(t), z(t),%(t),£(t))T. In
this paper it is more convenient to use the real time ¢, instead of the Euclidean time 7 employed
in [33]. Accordingly, the D-module representation acting on the (1,2, 1)[go] multiplet is defined
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by the operators

i 0 0 O 01 0 0
~ | 0 i 0 0 = | 0 0 0
H=1"0 0o i o | =100 0 —ia |
0 0 0 id 0 0 i O
0 01 0 0 0 0 1
A | 0 0 0 id ~ [ 0o 0 —ig 0
QIO_ Zat 0 O O ) QOl— 0 _1 0 0 (1)
0 10 0 ¢, 0 0 0

They close the Zg x Zs-graded supertranslation algebra (A.7) defined by the (anti)commutators
{Q10,Q10} = {Qo1, Qor} = 2H, [Qu0,Qu1] = 27, [H,Qu] = [H,Qu1] = [H,Z] = 0. (2)

The D-module representation acting on the (1,2, 1)1y multiplet is defined by the operators

icy, 0 0 0 0 -0 0 0
| 0o i 0o o - -1 0 0o o
H= 0 0 i 0 | Z= 0 0 0 —idy |’
0 0 0 o 0 0 i O
0 0 i O 0 0 0 o
~ 0 0 0 1 ~ 0O 0 -1 0
@o=11 0 0 o Cu=19 o, 0 o )
0 i, 0 O 1 0 0 O
They close the (2) algebra (in the notation, the “ ™ ” symbol replaces “ = 7).
The field transformations are respectively read from (1) and (3). We have
x 1ZJ z & ' z z
512 | N 2 N s 1zl 7.
3 z 3 i § i)
and ) _
x i x i€ x —Z
~ z £ ~ z — > z -
: — : — Z — g
Q10 " . Qo " il " —i (5)

The operator H=H maps the fields into their time derivatives multiplied by 4.

In the construction of the classical actions the [10]-graded and the [01]-graded component
fields are assumed to be Grassmann. It is a consequence of the more general (A.2) prescription
for the (anti)commutators of the graded component fields. The action of the operators (1) and
(3) on the graded component fields is assumed to satisfy the Zgo x Zg-graded Leibniz rule.

For the (1,2, 1)[gg) multiplet, the classical action S = {dtL, invariant under the (4) transfor-
mations and (2) algebra, is given [33] by the Lagrangian

L= ['0' + Elina
where L, = 1o(2) (22 — 2% + i) — i€€) — Lpy(x)zpp¢  and Ly = pz. (6
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The coupling constant p has Zy x Zg grading deg(u) = [11]. We have denoted ¢, = %(;).

The Lagrangian term L, is written, in manifestly invariant form, as

Lo = —57010@oig(0) + 5 55(0ed) 0(2) = guala). @

The Euler-Lagrange equation for a component field ¢, which can be expressed, taking into
account how fields are ordered, either as

d — —

(@)=L = 0 (8)
or as

d < “«—

ST -L7, = o, ©)

produces in both cases the same set of equations:

B = = 50ald® 4 2P — i+ iEE) — JbaanE,
%2 = G+ 2
6 = —buliih+ 26),

66 = —2ou(ite — 20). (10)

For the (1,2, 1)[11] multiplet the invariant classical action & = Sdtz is obtained, see [33], from
the Lagrangian

Z = ZO’ + Zlina

where L, = 10(2)(32 — 22 + ihp — i€€) + 1@, (2)zpe  and Ly =mx.  (11)

N[ =

As notable differences with the previous case ®(z) is an even function of z and the coupling
constant [ is real, its Zgo x Zy grading being given by deg(z) = [00].
The Lagrangian term L, is written, in manifestly invariant form, as

1d
2 dt

Lo= 37000 f () + 5 (12D, 8(:) = farle), (12

with f(z) an even function of z.
The Euler-Lagrange equations of motion now read

;= _%@(z? + 2 — iy + iE€) + %ézzxw&
2@.’1; = q)z¢§ + 2E7
i@ = B(-izg o+ at),

i = —%@Z(iéf—kxw). (13)
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2.1 The Noether charges

We recall the general construction of the Noether charges. An action S = {L(g;(t),¢:(t))dt is
invariant under the variation ¢;(t) — ¢;(t) + d¢;(t) provided that there exists a A(t) such that

59 = f At (14)
For our Zs x Zs-graded fields the variation 4.5 is computed as
0SS = dt(dqiaqiﬁﬁ-éqia(sqiﬁ) = | dt (5qi<6qi£— %(ﬁqzﬁ)> + %(6(1@6(1}) . (15)
By using the equations of motion the invariance of S produces the identity
d N
Jdtdt(A—éqi @qlﬁ) =0 (16)
which implies the existence of a conserved charge @ given by
Q=A—06q74L. (17)

Applying formula (17) to the Lagrangian (6) under a (4) transformation we easily obtain
A. Since no confusion arises, for convenience we use the same notation for the generator of the
transformation and its corresponding conserved charge.
The Noether charges for the invariant action of the (1,2, 1)[og) multiplet are therefore given as

H = %gb(ig +24) + %qﬁmzzM — pz,
Qo = i +ipg,

Qo = ¢t — i,

7 o= (624 youtt— )i (18)
The following intermediate results were used to compute (18):
A 8g; 0 . L
il c o(* + swib - L€€)
Quot|  Solist +iv) —int S6(3d0 + i20) )
Qoui| 5000 =€) + i S0 +i20)
2 |5 (ouive + 00 we)) + | oz 52 (we))

The Noether charges @10, @01 in (18) do not depend on the auxiliary field z.
By using the algebraic relation for z in the (10) equations of motion, we can eliminate z from
all formulae obtained above. We get
Pa

=P o
z = 2¢w§+¢. (20)
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With this position the Lagrangian (6) now reads

2

1 : : x
£ = 5ol + i —igd) - 'PEue 1 b (21)

The Euler-Lagrange equations (10) become

. . 2
8t = 0 (® — i - ig) — B (22) e L0

2 2\ ¢ 2 $2’
io = —50 (i + £e).
i0¢ = 500 (id€ = Lu). (22

From the second and third equations we obtain

Pz

i) = —igEE = uo SUE. (23)
These relations simplify the first equation in (22); at the end we get the equations of motion
oi = —lqﬁx:fc? + M(dﬁ — @)w — “jﬁ
2 o* 29 2 ¢?’
L 1 . 7
o) = —5o(itv+ 5e),
. 1 . I
66 = —you(ite—Lu). (24)
The Noether charges now read as
B - leitsuloge-
2 by 2’

@o = pith +ipé,
Qo = o€ —im,
Z = 0. (25)

One should note that the Noether charge 7 now vanishes.
The (25) Noether charges are conserved under the (24) equations of motion:

d~ dna

d ~
ZH = @Qlo = @Qm = 0. (26)

The same procedure can be repeated to compute the Noether charges of the (1,2,1);;; model
defined by the Lagrangian (11). The results corresponding to formula (18) in this case are

. 1 1
H = §®(é2+x2)—§¢>zmw§—ﬁx,
Qo = ®€+im,
Qo1 = ®z¢ —ipg,

1
Z = (Pz-— 5<1>Z7¢;§ —.)z. (27)
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3 The Hamiltonian formulation of the classical models

We discuss here the Hamiltonian formulation of the classical models introduced in Section 2. In
order to apply the canonical quantization of the models in Section 4, following the procedure
of [37] in connection with supersymmetric mechanics, we reexpress at first the component fields
entering the given multiplet in terms of a new basis called the “constant kinetic basis”. We
then introduce the Hamiltonian dynamics, defined by Poisson and Dirac brackets, in this basis.
To avoid unnecessary doubling of the text we extensively discuss the (1,2,1)[gq model, while
presenting only the main results concerning the (1,2, 1)[;1) model.

3.1 Classical Lagrangians in the constant kinetic basis

For the (1,2, 1)[00] model the “constant kinetic basis” which eliminates ¢ from the kinetic term
of (6) is reached through the positions

y=y(x), u=+o(x)z, P=+/o(x), E=+/d(2)¢, (28)
where y satisfies
Yo = +/@(x),  which implies  ¢2(y) = ¢y(y)ye = /O (y) ¢y(y). (29)

We rewrite the Lagrangian, equations of motions and Noether charges of Section 2 in terms
of the new set of fields (28).
The Lagrangian (6) now reads

g:;<y'2—u2+zw—i§é>—;ifuw£+ ﬁu (30)
In terms of the new function W(y), introduced through
1
w = y 31
) P(y) o
we get . .
L- %(:92 —? + i) — i) + (In W)y u€ + pWu. (32)

The Euler-Lagrange equations (10) are written as

G = (In W)y, uh€ + pWyu, u= (In W)€ + uWw,
i) = (In W), ué, i€ = —(In W), uih. (33)
The Noether charges (18) now read
~ 1 I
B o= LG u?) — (W), ud - i,

@m = gU+ipW¢,
Qoi = g€ —ipWi,
Z = g(u— (InW)ypé — uW). (34)

When eliminating the auxiliary field u we get the Lagrangian

L= %(zﬂ + i — PEE) + Py + %qu? (3)
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the equations of motion

y = NWyy%"“NZWyW?

l@ = ,“Wyg,
i€ = —pW,b (36)
and the Noether charges
H = %z’f — uWy € — %uQWz,

@o = gU+ipW¢,
Qo = y&—ipW,
A 0. (37)

For the (1,2, 1)[11] model the constant kinetic basis is given by

T = (I)<Z)I7 zZ= 0(2)7 1/; =V (I)(Z)sz)v é: V (I)(Z)fv (38)
where C(z) is a function with Zg x Zs-grading [11]. It satisfies the relation
C.(2) = \/P(2), so that 32 = 220(z), D.(2) = A/P(2) Dz(2). (39)

The consistency requires that 4/®(z) is an even, [00]-graded function.
After defining W (2) to be

W(2) = —E—, (40)
by repeating the same steps as before the Lagrangian (11) is expressed in the new basis as
_ 1 . ~ 2 ~2 __ -~ __
L= (2 =2 + iy — i) — (W (2)):30€ + AW (2)7. (41)

After eliminating the auxiliary field Z, the Lagrangian becomes

L= (5 + il — i&d) ~ W:()0E + W) (42)

while its associated Noether charges are

0 o= L2 W@ W,
Qo = F+iW(3),
Qo1 = 2 —iW(2)E,

Z = 0. (43)

3.2 The Hamiltonian mechanics of the (1,2,1)[p model

We introduce now the Hamiltonian formulation of the (1,2, 1)[gq) model.
The conjugate momenta computed from the Lagrangian (35) are introduced through
) i_

py=L0y=y, py=Lig=gv,  pg=LO;=—3¢ (44)
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The Hamiltonian H is defined as
) 1 — 1
H:=pg4i— L= Epg — W€ — ilﬂwi (45)

One should note that the Hamiltonian is identical to the Noether charge H given in (37).
In terms of the momenta (44) the Noether charges are

~ 1 1 ~ - ~ -
H = 5py = pWy€ = W2, Quo =pyt +ipWe, Qo = py€ —ipWe.  (46)
We have two constraints, given by

flzw_iwa f2:pg+%g7 (47)

whose Zg x Zy grading are deg(f1) = [10], deg(f2) = [01].
The Poisson brackets are conveniently introduced through

{A,B}p = ATB— (-1)*PBTA, T=70,7,,+ 7,7, +:0,, (48)

where deg(A) = a, deg(B) = b.

One may easily see that the constraints (47) are of second class:

{f1, fite = —{fa, fo}p = —4, {f1, f2}» = 0. (49)

The computation uses the identities

Ty 0 T, 0
flay|={-i2], fR|Ts]=|0]
Ve 0 Te i/2
5)py 0 5)py 0
Ty | =11, Ty | 2= 0] (50)
0 pe 0 0 pe 1

As easily seen from the definition (48), the nonvanishing Poisson brackets of the canonical
variables are

{y,pyte = {th,pyte = {E pete = 1. (51)
The Poisson brackets of the Noether charges (46) are computed by using the relations
~ ﬁy _WWy@ R ﬁy iNWyg
Qo | g [=| W |, Qu|ly|=| » |
5 g py a g ZMW
N ﬁy _NWyy% - /szyW
e —uW,E (52)
8 E _NWyw
_a)Py R § _a)Py R (2 _a)Py R Py
ipa Qo1=10], i% Qu=10], i% H=|0 (53)
0 Pg 0 0 Pg 0 0 Pe 0
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One proves that the Poisson bracket of the pair @01, @10 vanishes in accordance with the Z = 0
relation (25).
All Poisson brackets among the Noether charges (46) are

{Qo1, Qoi}r = —{Q10, Qro}p = —2iuW, Y€,
{Qo1, Qro}r = 0,
{@01, ﬁ}P = _iﬂwyapy + N2WyWEa
{Quo, H}p = inWy€py + > W, W, (54)
At the level of the Poisson bracket, the Noether charges (46) do not recover the Zg x Zg-graded

supertranslation algebra (2).
Due to the presence of the second class constraints (47), the Dirac brackets are defined as

{A,B}D = {A,B}p - {A, fi}P(Afl)ij{fjaB}P =
= {A, B}r — {4, file{f1, B}r + i{A, fo}e{f2, Bl», (55)

) ) -1 0 ) 0

A — {fl fl}P {fl f2}P _ 7 ) Al = ? . (56)
{f2, fite {f2, fo}e 0 i 0 —i

The Dirac brackets of the Noether charges (46) satisfy, with 7 = 0, the Zs x Zo-graded super-

translation algebra (2):

where

{Qo1, Qo1 }p = 2iH, {Q10, Qro}p = —2iH,

{Qo1, @10} = {Qo1. H}p = {Qr0. H}p = 0. (57)
This set of equation is verified by using the identities
{@017fl}P = _ZMW) {QOl)fQ}P :py, {@lﬂafl}P :py7
{Q10, fo}p = iuW, {1, H}p = pWE, {f2, H}p = pWy. (58)

The canonical equations of motion obtained by the Dirac brackets with the Hamiltonian H = i
of (46) are identical to the Euler-Lagrange equations (36):

y = {yaﬁ}D = Dy, Py = {pyaﬁ}D = UWyy%‘i‘MQWyW
b= {¢,Hlp = —ipW,€, &= {E Hjp = inWy9. (59)
The nonvanishing Dirac bracket for the canonical variables are
{yapy}D = ]—) {@7 J}D = _7:5 {E)E}D =1. (60)
This is seen as follows: let deg(A) = a = [a1, az]; then one immediately checks that
- i
{A7f1}P:AaE+(_1) 155%14 (61)

implies that f; has nonvanishing Poisson brackets only with ¢ and Py

7

{@, fite =1, {%, fite = 5 (62)
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Similarly, '
{A fotp = ATg— (1) -7, A (63)

implies that fo has nonvanishing Poisson brackets only with & and Pg:

Ehle=1  (rpfle=1y (64)

Combining these nonvanishing Poisson brackets with the ones given in (51), it is not difficult to
see that, in addition to (60), further nonvanishing Dirac brackets for the canonical variables are

— — 1
{¢7PE}D = {fapg}D = 5 (65)
They are reduced to the ones in (60) by using the expression of the momenta (44).

3.3 The Hamiltonian mechanics of the (1,2, 1);;; model

We collect here the relevant formulas of the Hamiltonian formulation of the (1,2, 1)[;1) model.
They are derived from the Lagrangian mechanics (42) by using the same procedure discussed in
the previous subsection.

The conjugate momenta are

:=L0:=% p;= Z‘% =¥ pe= L0:=—=¢. (66)
The Hamiltonian H = H is
H=H=_p?+W:(2)é - %W(z)? (67)
It coincides with the Nother charge (43). The other nonvanishing Noether charges are
élo = Pzé + iW(E)& ém = lez - ZW@)& (68)
We present the Dirac brackets for the canonical variables. They are given by

{vai}D =1, {QLaIZ}D = —1, {5) g}D = 1. (69)

The nonvanishing Dirac brackets of the Noether charges are

{Q10, Qro}p = —2iH, {Qo1, Qor}p = 2iH. (70)

The canonical equations of motion defined by the Dirac brackets are

2= {5 Hp =
pz = {pz, H}p = —sz b+ WsW
'LE = {'LL H}D = ZWz{y
{ H}D = —inw. (71)

They are identical to the Euler-Lagrange equations obtained from (42).
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4 The canonical quantization

We present the canonical quantization of the (1,2, 1)[9g) and (1,2, 1)1} classical models.
As is customary, the quantization is obtained by replacing the Dirac brackets in (60) and
(69) with (anti)commutators. It is obtained through the mapping

{, .o — —i[,.}, (72)
where the “[.,.}” symbol introduced in (A.2) denotes the Zy x Zg-graded Lie brackets.

4.1 The quantization of the (1,2, 1), model
For the (1,2, 1)[og) model the canonical Dirac brackets (60) are replaced by the (anti)commutators

[y7py] = i’ {Ea@} = 17 {ga g} = _17 [1/175] = 0. (73)

In the Heisenberg picture the (anti)commutators (73) are computed at equal time, let’s say
at t = 0. A consistency condition further requires the deg(u) = [11] coupling constant p entering
(45) to anticommute with v, &, so that

{m v} ={n.¢t =0. (74)

It follows from (73) and (74) that the quantization of the Noether charges (46) satisfy the
relations:

{@m@m} = 2H, {@01,©01} - —2H,
[Qo1, Q0] = [Qo1, H] = [Q10, H] = 0. (75)

Before going ahead we introduce the representations of the relations (73) and (74).
The quantum operators 1, £, 1 can be represented by 4 x 4 matrices satisfying (A.9), so that

Y eG, £€Gn, peGu (76)

and

{0} =& =L, [¥.&=0, {d,u}={u=0. (77)

We are looking for real matrix solutions to the above system of equations.
This means that in particular 1 should be given by a linear combination

@ZAl‘Y®I+/\2-Y®X

of the split-quaternion matrices I, X, Y, A introduced in (A.10). Similar relations hold for £ and

. The requirement that @2 is proportional to the identity implies that A2 cannot be both
different from 0. Therefore, up to an overall sign, there are only two possible solutions for 9 (a
similar argument applies to £ as well). The system of equations (77) is solved (up to an overall
sign for each one of the three matrices) by the two sets of triples:

ba=5Y®I &=5Y®A fi=X®A (78)
and
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It is convenient to introduce the triples of Hermitian matrices
wA = aAa EA = Z.gAv HaA = ZﬁA and wB = @Bv §B = Z.EBv uB = iﬁB? (80)
so that
— _ ot ., f ]1
wA,B = ¢A737 §A,B = §A,Bv HAB = Hp B- ( )

In terms of these representations and up to an overall normalization factor, the quantized
Noether charges @19, Qo1 are associated to the hermitian conserved charges Qf‘o, Qa“l and Qﬁ),

QoBl , given by

Qio = —i(Ya -0y + W(lpata),  Qfo = —i(¥n - 9y + W(y)nsén),
Qoy = —i(6a- 9y + W(Wpava),  Qfy = —i(ép - 0y + W(y)upis). (82)
By construction the hermiticity conditions hold:
Q)" =@, @H'=0h, @W'=aQH, QM =QH- (83)
These four supercharges are
0 0 Oy + W(y) 0
Qiqo _ b 0 0 0 Oy + W (y)
|l a-ww o 0 o |
0 oy — W(y) 0 0
0 0 oy + W(y) 0
QB - A 0 0 0 —0y — W(y)
10 V2| o -Ww(y) 0 0 0 ’
0 —0y + W(y) 0 0
0 0 0 Oy + W (y)
04 = 1 0 0 —0y — W(y) 0
RN 0 4-Wm 0 o |
—0y + W (y) 0 0 0
0 0 0 Oy + Wi(y)
1 0 0 oy + W(y) 0
B _ - Yy
Qi = V2 0 —0y + W (y) 0 0 (84)
—0y + W(y) 0 0 0
The supercharges are the square roots of the Hamiltonian H, since
{Q16, Q1o = {Q1, @y} = {Qo1, Qo) = {QF1. Q1) = 2H, (85)
where
H = H' (86)
and
—0p + W24+ W' 0 0 0
g - ! 0 0+ W2+ W 0 0
S22 0 0 —0p+ W —W 0
0 0 0 i L

(87)
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In the above formula W = W (y) and W' = dilyW(y).

One should note that, unlike the supercharges (82), the Hamiltonian H does not depend on
which choice of three matrices, either ¥4, €4, pua or ¥p, £p, wp, is made.

The Hamiltonian (87) reproduces, up to a normalization convention and the reordering of
the diagonal elements by a similarity transformation, the Zs x Zs-graded quantum Hamiltonian
introduced in formula (3.1.1) of [23]. As promised, we obtained this quantum model from the
canonical quantization of the Zgy x Zgy-graded classical model based on the (1,2, 1)[00] multiplet.

We point out that the four matrices 1 4,1¥p,€a,&p from (80) do not commute with the
Hamiltonian. This is in agreement with the fact that they correspond to the quantization of
the classical dynamical variables v, € and that their Heisenberg evolution is expected. The
matrices 4, pp from (80) are, in their respective representations, the quantum counterparts of
the classical coupling constant p. It is rewarding that they commute with the Hamiltonian:

[H7 :UA] = [H7 :UB] = 0. (88)

This is an extra consistency check of the correctness of the proposed quantization prescrip-
tion. All quantized coupling constants introduced in the following commute with the respective
Hamiltonians.

4.2 The quantization of the (1,2,1)r1) model

For the (1,2, 1)[11) model the canonical Dirac brackets (69) are replaced by the (anti)commutators

[Zpsl =i, (o) =1  {£&=-1  [)=0. (89)
The coupling constant £ has now deg(ft) = [00], so that
[, /1] = [€, ] = 0. (90)
On the other hand, since deg Z = [11], we have the vanishing anticommutators
(2,9} = {2,6} = {p=, ¥} = {p5, €} = 0. (91)

One can therefore set

Z = yp, (92)

where y is a standard coordinate and p is a matrix anticommuting with 1[1, §~ .
In analogy with the (1,2, 1)[gg) model, two sets of triples of hermitian 4 x 4 matrices can be
defined. They can be expressed, in terms of the matrices defined in (A.10), as

ha =2 #Y®I §a =" Y®A pa=iX®A (93)
and

vpg =L HY ®X, §B—j§A®K pp = —il ® A. (94)

The hermitian supercharges QlO’B, Qof are obtained as the quantized version of the Noether
charges (19, Qo1 given in (68) by using the representations (93,94), respectively. We have

Qly = paa-0y+va W(y),

Qfy = pBép 0y + U -W(y),
Qi = paa-dy+Ea-Wl(y),
QE = ppidp-0y+E& W(y).
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The supercharges satisfy
( 1140)T = Q1140a ( ﬁ))T = ﬁ)a (Q()Al)T = Q641a (Q()Bl)T = Qégr (96)

The four supercharges are square roots of the hermitian quantum Hamiltonian H , recovered
from the anticommutators

~

The quantum Hamiltonian H coincides with the quantum Hamiltonian H given in (87) when
setting W (y) = W (y). This implies that the Zy x Zo-graded models (1,2, 1)[og) and (1,2,1)[11],
despite being classically different, produce after canonical quantization the same quantum theory.

5 Symmetries of the single-multiplet quantum Hamiltonian

We present here the different graded symmetries of the quantum Hamiltonian H given in (87).
Since it coincides with the Hamiltonian derived from the quantization of the (1, 2, 1)[11] model, it
is sufficient to discuss the symmetry operators obtained from the quantum (1, 2, 1)[00] theory. We
recall that, while the Hamiltonian does not depend on the chosen triple of hermitian matrices
(80), the Noether supercharges introduced in (82), on the other hand, depend on the given
choice. By construction, each one of the four operators Q‘f‘o, Qﬁ], Qg‘l, Qggl in formulas (82) and
(84) is a conserved symmetry operator. Therefore it makes sense to introduce, for each such
pair of operators in the Gi19 and Gy; sectors, the induced Zo x Zo-graded superalgebra.
The results are the following:

i) two copies of the Beckers-Debergh algebra.

By taking a pair of operators defined by the same triple of hermitian matrices, either “A” or
“B”, we obtain two separate realizations of the Beckers-Debergh algebra, namely the Zo x Zo-
graded superalgebra with vanishing Gy; sector, see (A.8).

The two copies of Beckers-Debergh algebras are respectively given by the two sets of three
operators, &4 and Gp,

Ga= {QanQE)LllvH} and Gp = {QIB}MQ(?I?H}’ (98)

which contain the common Hamiltonian H, with H € Ggyg.
In both cases the (A.8) (anti)commutators are satisfied since, besides the anticommutators
in (85), namely {Q4h, Q1) = {QF,QF} = 2H, all commutators are vanishing:

[H, Q1] = [H, Q] = [Q16,Q) =0 and [H,Q%] = [H,Q¢] = [Qf), Q51 =0; (99)

i1) two copies of the one-dimensional Ze X Zo-graded supertranslation algebra.

By taking a“mixed” pair of operators constructed from the two different triples (“A” and
“B”) of the hermitian matrices (80), we obtain two, conveniently normalized, separate realiza-
tions of the one-dimensional Zy x Zo-graded supertranslation algebra (A.7). In both cases the
G11 sector is nonvanishing.
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The two copies of the supertranslation algebra are respectively spanned by the two sets of
four operators &; and Gs, given by

G = {Q1). Q5. H.Z} and &, ={Q1,, Q% H,Z}. (100)

Their respective Gi1 sectors are spanned by the hermitian operators Z and Z,

7=z, Z=7" (101)
We have
0 —85 + W2+ W 0 0
7 _ —0p + W2+ W' 0 0 0
h 0 0 0 —0p+ W2 - W
0 0 —0p + W2 - W' 0
(102)
and
0 02 —W?_w! 0 0
— 02 —W?2—-Ww' 0 0 0
Z = 2 2 /
0 0 0 W2 W
0 0 2+ W2 W 0
(103)

The nonvanishing (anti)commutators of the Zs x Zo-graded superalgebra & are

{Qﬁ)vQ%} = {Qf)qva(‘)Al} = 2H, [ ﬁ)aQ[)Al] =iz (104)

The nonvanishing (anti)commutators of the Zy x Za-graded superalgebra Gq are

{Q, Q) = {Q6. Q) =2H,  [Q1h, Q6] = iZ; (105)

iii) the Zo-graded superalgebra of the N = 4 supersymmetric quantum mechanics.

Besides the Zo x Zo-graded symmetry algebras, the Hamiltonian H possesses a Zo-graded
symmetry, making it an example of N = 4 supersymmetric quantum mechanics [39] satisfying

{Qia Q]} = 261]H7 [H7 Ql] = 07 for Z?] = 17 2737 4. (106)

The two sets of mixed Noether supercharges operators, Qﬁ)7 Qél and Qﬁ), Q(’]Bl, define two copies
of superalgebras of the A/ = 2 supersymmetric quantum mechanics, since their respective anti-
commutators are both vanishing

{Q%, Q4 =0 and {Q. Q8 =0. (107)

In order to get the N' = 4 superalgebra (106), two extra supersymmetry operators, which do
not coincide with the Noether supercharges (84), have to be added. A convenient presentation
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of the 4 operators @; satisfying (106) is given by

)

Q1 = QF 7(Y®X 0+ AQX - W(y)),

Q = Q6‘1 = E<Y®A~ay+A®A-W(y)>,

Qs = ~—(Y®Y -4, +AQY - W(y)).

Qs = (ART-0y+Y QI -W(y)).

L
\f
(108)

The matrices A, X,Y, I have been introduced in (A.10).

6 7y x Zs-graded interacting multiparticle Hamiltonians

We now further apply our scheme to derive a new class of Zg x Zo-graded quantum Hamiltonians.
Specifically, we present the quantum systems obtained by quantizing the classical actions of sev-
eral, interacting, (1,2, 1)[go) multiplets. The construction of these classical models was presented
n [33] (see subsection 5.3 of that paper). In particular, the invariant action Sop = {dtLop of
the 2-particle case is expressed, in real time ¢, in terms of the Lagrangian

Lop = 5[911@% — 23 iy — i€1€1) + goo(E3 — 25 + ihorhy — i€als) +

G12(28189 — 22120 + ih1the + iWhathy — i€1€s — i€a€1) — gr112191€1 — Gazazatbaba +
gr2(—zY1& — 21 (V12 + 2&1)) + gao1 (21928 — 22(V162 + ¥2&1)) +
)\1,uzl + )\Q,U,ZQ]. (109)

The component fields of the two multiplets (respectively denoted as x1, 11, &1, 21 and x2, 19, £2, 22)
transform independently under the Zgy x Zo-graded transformations (4). The fields x1(t), za(t)
describe the propagating bosons, while z (t), z2(t) describe the auxiliary bosons. The Lagrangian
depends on the prepotential function g(z1,z2). The functions g;;(z1,x2) are interpreted as the
metric of the two-dimensional target manifold. The metric is constrained to satisfy the equation

gij($1,$2) = axiaxjg(x1’x2)7 for i,j=1,2, (110)

in terms of the prepotential function g(x1,x2).
The condition

g12(x1,22) # 0 (111)

is necessary in order to have interacting multiplets.

Finally, the linear terms in z1, 22 in the last line of the right hand side of (109) depend on
the [11]-graded coupling constant u, while Aj, Ao € R are arbitrary real parameters.

The construction of invariant classical actions for n > 2 interacting (1,2, 1)[go) multiplets is
a straightforward extension of the n = 2 procedure.
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6.1 Constant kinetic basis and classical Hamiltonian formulation

The quantization of the (109) action requires repeating the steps discussed in Section 3 and 4
concerning the quantization of the single multiplet Lagrangian (6). Here, we limit ourselves to
discuss the main relevant differences with respect to this case.

The passage to the “constant kinetic basis” is obtained by introducing two smooth and
differentiable functions u(z1, z2) and v(z1, z2); at least locally the transformations

x1 — u(ry,x2), x9 — v(x1,T2), (112)

are assumed to be invertible.
The time derivatives are

U = U1T1 + UL, V= V1T + VoTa. (113)
They are chosen so that the constant kinetic term
1 .9 -2
K = §(u + 07) (114)
reproduces the kinetic term for the (109) propagating bosons, given by

1 . . o
K = 5(91156% + gooih + 2g108182). (115)

This is obtained with the identifications

2 2
gin = uj +uy,
) 2
g2 = uj+ Vg,
g12 = UjUu2 + vU1vV3. (116)

For the above g;; metric the Hessian G' = det(g;5) is
G = gng2—gir = (w1va — ugv)®. (117)

Being derived in terms of the prepotential g(x1, z2) and satisfying the (110) equation, the metric
gij satisfies the constraints

9112 = G121,
9221 = G122 (118)

Under the identifications (116) these constraints imply two nonlinear equations for the partial
derivatives of w and v. They are, respectively,

Ci1 = uwiuiz —uguir + vivie — vouyg = 0,

Cg = ULU22 — ULUI2 + V1V22 — VU192 = 0. (119)

It is worth mentioning that the (119) constraints for u,v admit nontrivial solutions.
As an example, the cubic polynomials

w(zy,x2) = z1(1 + az] + 3ax3),  v(z1,22) = 22(1 + 3az] + az3), (120)
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satisfy (119) and induce, for any real o € R, the metric g;; = 0;0;g(x1, z2) obtained from the
prepotential

1 a 3
g(x1,22) = 5(55% + x%) + 5(303l + l‘%) + EQQ(l‘? + f’fg) +

9
3axizs + §Oé213%$%(:b% + x3). (121)

The two-dimensional constant Euclidean metric is recovered at o« = 0.
For the [10]-graded odd fields 11,12 the change of variables

P ) ( up Uy ) ( U1 )
- 122
< y vl V2 (> (122)
guarantees that the fermionic constant kinetic term Ky,

Kf = %(d]ud}u + %%) =
= %(gn%% + gaathathy + g2 (Y1t + hothe) + (Cry + Caia)ih1eha), (123)

reproduces the fermionic kinetic term for 1,19 in (109) once provided that the nonlinear con-
straints C1 = Cp = 0 from formulas (119) are satisfied.

An analogous change of variables is made by replacing in equation (122) the fields )1, o
and 1y, ¥, with the [01]-graded fields &1, &2 and &,, &, respectively.

From now on everything proceeds as in the single multiplet case. After solving the algebraic
equations of motion for the auxiliary fields z1, zo, we then introduce canonical variables, Poisson
brackets, Dirac brackets and the Hamiltonian formalism in terms of the new component fields
of the constant kinetic basis.

In particular in this basis the analogs of formulas (46) now read, for the two-particle Noether

charges Q2p;10, Q2pP;01, as

C:§2P;10 = Duu + Py + Z/«‘(Wugu + Wv&v)a
Q2P;01 = puu + Poéo — Z,U/(Wuwu + vav)a (124)

where p,, p, are the conjugate momenta p,, = u, p, = v.
Instead of a single field W as in (34), we have now two fields, W,,, W,. They are derived
from the A1, A2 terms in the Lagrangian (109) and satisfy

Wuthy + Wohy = M1 + Xotba, Wby + Wohp&o = A1 + A&, (125)

so that the analog of formula (31) is provided by

1 1
Wy = E()\IUQ — A1), Wy = E(*)‘lw + Agun). (126)

One should note that the suffices u, v denote the two different fields W,,, W,, and are not a symbol
of derivation.
In the above expressions

é = U1V2 — U2V (127)
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is the determinant of the transformation matrix entering the right hand side of (122). Due to
(116), we have that the Hessian G given in (117) is

G = G- (128)

In the g12 = 0 non-interacting case the functions u,v can be chosen as u = u(x1), v = v(x2).
Therefore uo = v1 = 0 and the expressions for W,,, W,, are simpler. Under this assumption we
get:

uy =v; =0 imply Wy=22, W,=2 and ,W, =2ad,W, =0. (129)

uy? V2

The weaker condition 0,W, = 0,W,, for the interacting case is a result, as discussed below in
subsection 6.3, of the quantization procedure requiring a matrix representation of the variables

Vs Y, Eus So-

The non-vanishing Dirac brackets of the conjugate variables are

{u,putp = {v,po}p =1, {Yu,%u}p = {¥v,Vu}p = =i, {&u,&u}D = {0, &}p = i. (130)

The classical Hamiltonian ﬁgp can be read, in analogy with formula (57), through the Dirac
brackets

{@2P;017@2P;01}D = —{@2P;10,©2P;10} — 2iHyp. (131)

The extension of this construction to the case of n > 2 interacting multiplets (1,2,1)[gq) is
straightforward. Omne obtains n pairs of conjugated variables for the propagating bosons, n
[10]-graded fields 1; and n [01]-graded fields &;.

6.2 Matrix representations of the quantum (anti)commutators

The construction of the quantum theory requires matrices which solve the (anti)commutators
which extend the set of single-particle relations (77) induced by the Dirac brackets. In the
passage from a single to n multiplets we have n matrices denoted as 1);, n matrices denoted
as &;, with 1, € Gio, §; € Go1 (i = 1,2,...,n) and the single matrix p € Gi1. They satisfy the
(anti)commutators

{Em@j} = _{givgj} = 05 - I, [EZ?E]] =0, (¢} =1{&nu =0 (i, =1,...n),
(132)

where I is the identity matrix of proper size. This system is minimally solved by 27*! x 2n+1
real matrices. The matrix sectors Gig, Go1,G11 can be read from formula (A.9) with the entries
given by 2"~ x 2"~1 blocks. We present the n = 2,3 solutions.

We have at first to take into account the gradings 1, € Gio, & € Go1, p# € G11 and the
(anti)symmetry of these real matrices. Therefore, up to a normalization factor, for n = 2 the
matrices should be respectively picked up from the sets

U, YRI®LYRX®I, YRI®X, Y®X®X,
ARI®A AQX®A YRIQY, YRXQY;
& YRARIL YRA®X, YRAQY, AQ AR A,
AQY ®I, ARY ®X, ARY ®Y, Y ®Y ® A;
L XQARX, XQAQY, X®ARI, XQY ® A,
IQARX, IQAR®Y, IQAR®I, IQY ® A, (133)
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where A, XY, I are the 2 x 2 matrices given in (A.10).
Consistent n = 2 solutions of the (anti)commutator relations (132) are found by setting, e.g.:

1= Y ®X®X, Yy=5Y®X®Y, then &= 5ARY®L &H=5YRY®A4,

while p iseither p=XQY®A or p=IQARI (134)
and, alternatively,

U= FY®I®X, ¥=3Y®I®Y, thn &§ =5V ®AR®IL &= 540404,

while g 1selther p=X®ARI or p=IRY R A. (135)

For the 3-particle case, an n = 3 solution of the (anti)commutators (132) is given by

Py = 7:Y@I@X@X wrr—YCﬂ®X®Y %——7Y®I®Y®I
& = 7:A®A®A®I gr;— YRYRY®A, & = 7:Y®A®I®I
p=IQYRARI. (136)

We are now in the position to present the Zs x Zo-graded hermitian quantum Hamiltonians for
n = 2,3 (both interacting and non-interacting) (1,2, 1)[gp) multiplets. The general construction
for n = 4 follows the scheme here outlined.

6.3 Zs x Zo-graded quantum Hamiltonians of two interacting particles

It is convenient to indicate here as x,y the coordinates associated with the propagating bosons
that, in the constant kinetic basis, were previously denoted as u, v.
The hermitian, constant matrices derived from the (134) solutions can be expressed as

Ui =5 Y®X®X, wQ—&~Y®X®Y
glf LARY ®I, 547 YRY®A, ph=—i TQARI. (137)

The hermitian, constant matrices derived from the (135) solutions can be expressed as

V=5 Y®I®X, ¥f= 5 YRI®Y,
$253Y®A®L @_—7A®A®A =i - X®AQI. (138)

The two-particle hermitian Noether supercharges derived from (137) and (138) and corre-
sponding to the quantization of formulas (124) are

Q124P;10 = 2(1/1{‘6 +¢2f9 +W1NA51 +W2NA§2)
Qipor = —i(&l0n + 50y + Wiyt + Wapeps)),
Qspao = —i(U7 0+ ¥5 0y + WipPEl + WapPed),
Q1 = —i(&P0: + &0y + WipPyit + WapPys). (139)

They depend on the real functions Wi (x,y) and Wa(z,y). In the non-interacting case we
have 0,W; = 0,Ws = 0, so that Wy = Wi(x), Wy = Wa(y). The selection of the normalized
matrices p?, 4P in (139) and not of their alternative choices respectively presented in (134) and
(135) is made to ensure that the non-interacting Hamiltonian is a diagonal operator.
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In the interacting case the weaker condition
ayVVl("E, y) = axWQ(xa y)a (140)
which is solved by the positions

Wy = axf(x7y) = fma Way = ayf(xvy) = fy (141)

in terms of the unconstrained function f(z,y), has to be enforced.

The condition (140) is derived, at the quantum level, by the requirement that the operators
Q124P;107 QQBP;10> Q124P;017 QQBP;Ol are square roots of the same Hamiltonian Hyp. Since, e.g., in the
matrix representation (134) we have

vig £ wgel, (142)
the condition

(@5pa0)* — (@sp)* = 0 (143)

implies that the first order derivative contributions, appearing on the left hand side,

i (0 Wa — 0, W11 68 — (0. W — 0, W1)Y5'és!) = 0, (144)

should separately vanish for ¢{'¢5' and 4'¢{!, thus leading to (140). The condition (142) is
representation-dependent and not necessarily implied by the classical derivation.

It should be stressed that, for a given f(x,y), the consistency of the Zg x Zy-graded quantum
theory does not require to solve the inverse equations which are induced, see (126), by the
classical theory.

When (141) is enforced the four operators given in (139) are square-roots of the two-particle
Hamiltonian Hyp. They satisfy

{Q5p.10: Qipao} = {Qp.01> Qop.o1} = {QFp10, Q5p10} = {Q5p.01: Q01 } = 2Hap, (145)

where
Ho + Vi 0 0 0 0 0 0 0
0 Ho+V__ 0 0 0 0 0 0
0 0 Ho+ Vs 0 0 0 0 0
oy — 0 0 0 Ho+V__ 0 0 0 0
2P = 0 0 0 0 Ho+V_, —fay 0 0
0 0 0 0 —fey  Ho+Vi_ 0 0
0 0 0 0 0 0 Ho+ V. —fuy
0 0 0 0 0 0 —foy  Ho+Vi_
: 1 2 2 2 2 1
with Hy = 5(—8:6 — 0y + fa + 1) and Ves = §(efm + 0fyy), for €6==+1. (146)

By construction, the 2-particle Hamiltonian (146) is hermitian. In the

2

mf(l“,y) =0 (147)

f:vyE

non-interacting case the Hamiltonian Hsp is a diagonal operator.
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We can repeat for the Hop € Gyo Hamiltonian the analysis of the Zy x Zo-graded symmetries
given in Section 5 for the single-particle Hamiltonian.

Two copies of the Beckers-Debergh algebra (A.8) are obtained from the two sets of three
operators

Gopa = {Q§P;107Q§4P;017H2P} and Sapp = {QQBP;lonQBP;OlvHQP}' (148)

We have indeed vanishing commutators

[Qéqp;m» Q124P;01] =0 and [QzBP;m» QQBP;Ol] =0. (149)

The two sets of four hermitian operators

Gop1 = {QFp10: Q.01 Hap, Zop} and Gops = {Qip.10, Q5p.o1, Hap, Zap}  (150)

produce two copies of the one-dimensional Zy x Zs-graded supertranslation algebra (A.7), with
nonvanishing (anti)commutators

{QzBP;wa Q2BP;10} = {pr;op Q?P;Ol} = 2Hsp, [Qgp;m? Q124P;01] = iZap (151)

and, respectively,
{Q5p.10: Qdpao} = {Q5p01, Q5po1} = 2Hap, [Q124P;107 Q5p.o1] = 1Zap. (152)

The explicit expression of the Zop, Zop € G117 operators can be read from the commutators in
formulas (151) and (152). We present, for completeness, Zap. It is given in terms of the 8 x 8
matrices F; ; with entry 1 at the intersection of the i-th row and j-th column and 0 otherwise.
We have

Zop = —(02+0; — f2— [)(—FE13+ By — Esy+ Ey) +
(02— 07— f7+ f)(=Es7 + Es s — Ers + Egg) +
—2(8x6y — fmfy)(E&s + E677 + E7,6 + E8,5) +

2(f20y — fy0s)(Esg — Ee7 + Er6 — Eg5) +
_(fﬂcgc + fyy)(ELg + E2,4 + E3,1 + E472 + E5’7 + Eﬁ,g + E7,5 + E8,6)' (153)

6.4 7y x Zs-graded quantum Hamiltonians of three interacting particles

The n = 3 solutions (136) of the (anti)commutator relations (132) allow to define the Zg x Za-
graded, three-particle, interacting quantum Hamiltonian Hsp.

The three coordinates are now labeled, for simplicity, as z,y, 2. The hermitian, constant
matrices expressed in terms of the 1,1y, 15, &y, €y, &3, 1 matrices defined in (136) are

wl = Jl: o = a% ¢3 = JB) 51 = ZZI? 52 = ig% 53 = 123, =iu. (154)

The hermitian supercharges, respectively belonging to the Gig and Gg; sectors, are given by

Q3p;i0 = —i(Y10z + V20, + 30, + foliés + fylila + f21€3),
Qspo1 = —i(&10z + &0y + &30 + fapithr + fyfitpe + f.finb3), (155)

where f(z,y, z) is an arbitrary function of the three coordinates.
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They are the square roots of the hermitian three-particle Hamiltonian Hsp, given by

{Q3p;10, Q3p10} = {Qsp,01, Q3py01} = 2H3p. (156)

The Hamiltonian H3p is a 16 x 16 matrix differential operator. It is the sum of a diagonal part
Hgiqg and of the off-diagonal terms H, ;. In its turn the diagonal part is the sum of two terms,
Hy and V. We can set

HSP = Hdiag + Hoff7 Hdiag = HO + ‘/7 (157)

where

1

H() == §<—

aﬂ%x_ﬁgy_ﬁgz+f5+fy2+fz2)'H167 (158)

while V' and H, are conveniently expressed in terms of the 16 x 16 matrices E; ; with entry 1
at the intersection of the i-th row and j-th column and 0 otherwise. We get

Vo= Vo (Bin+ Erg) + Vi (Bag + Ess) + Vi (B33 + Es5) +
Vi (Ega+ Eep) + Vi y(Egg+ Ei515) + Vi (Ero,10 + Eie,16) +
Vo__(Eni + Ei313) + Vig—(Eri212 + Eia,14), (159)

where

1
Ve(Sp = i(efzz + 5fyy + pfzz)a for €0,p=+1 (160)

The off-diagonal terms are

Horp = foy(E3a+ Esz+ Es6+ Ess + Eo 10 + Er09 + E15,16 + E16,15) +
fzz(=E13 — E31+ Es7+ E75+ E012 + E12.10 — E1a,16 — Ei6,14) +
Jyz(=Ev 4 — Ey1 + Eg7 + Erg — Eg 12 — E129 + E14.15 + E15,14). (161)

The off-diagonal part of the Hamiltonian vanishes (H,¢s = 0) if the three particles are not
interacting, namely for

fwy = f:pz = fyz = 0. (162)

The set of three operators Q3p.10, @3p;01, Hzp close the Beckers-Debergh algebra (A.8) since
the commutator between Q3p.10, @3p;01 is vanishing:

[Q3p;10, Q3p,01] = 0. (163)

7 Conclusions

In this paper we estalished the Hamiltonian formalism for classical Zs x Zs-graded invariant
mechanical theories and performed their canonical quantization. We had to carefully specify
how the necessary ingredients (Poisson and Dirac brackets, canonical variables, etc.) apply to
graded fields. We worked out the cases of (1,2, 1)[00] and (1,2, 1)[11] Zo x Zo-graded multiplets
of component fields. Both these multiplets contain, see [33], two types of fermionic fields, one
ordinary boson and one exotic boson (in the (1,2, 1)[00] multiplet the ordinary boson is propa-
gating while the exotic boson is an auxiliary field, the situation being reversed for the (1,2, 1)1y
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multiplet). The theories derived by these multiplets are the simplest ones. For the moment we
left aside the quantization of the theories based on the other type of Zgs x Zs-graded multiplet
(denoted as “(2,2,0)” since it possesses two propagating bosons and two propagating fermions)
introduced in [33]. Based on the quantization of its counterpart in ordinary supersymmetric
quantum mechanics, see [37], we are expecting the (2,2,0) multiplet to produce more compli-
cated quantum Hamiltonians than the ones here derived. They should present, in particular, a
spin-orbit interaction. This class of theories will be left for future investigations.

Concerning the two types of Zy x Zse-graded (1,2, 1) multiplets we proved that the quantiza-
tion of the single (1,2,1);;; multiplet produces the same 4 x 4 matrix differential Hamiltonian
induced by the quantization of (1, 2, 1)[00]. We point out that we do not have a general argument
that this should be necessarily the case for several interacting multiplets. The identification of
the two Hamiltonians for the two single-multiplet cases can be the byproduct of their simplicity.
Loosely speaking the Zs x Zo-graded symmetry, in this simple setting, does not leave room for
an alternative, Zo X Zo-graded, invariant Hamiltonian.

The Zg x Za-graded quantum Hamiltonian introduced in [23] is recovered from the quanti-
zation of the classical invariant actions for a single multiplet (either (1,2,1)[o or (1,2,1)[11])
which were presented in [33]. It turns out that this Hamiltonian is the n = 1 representative of the
class of Zy x Zo-graded quantum Hamiltonians obtained by quantizing n interacting multiplets,
see formula (146) for n = 2 and formulas (157-161) for n = 3.

The construction of multiparticle quantum Hamiltonians is particularly relevant because
it helps answering the long-standing puzzle of the physical significance of a Zy x Zo-graded
symmetry. The single-particle quantum Hamiltonian (87) possesses different types of graded
symmetries as discussed in Section 5. Besides admitting Zs x Zs-graded invariance, it is also
an example of an ordinary N = 4 supersymmetric quantum mechanics, see (108). Its Zg x Zo-
graded symmetry is emergent, but the construction of the Hilbert space and the computation
of the energy eigenvalues of the model do not require it. A radical new feature appears when
considering multiparticle quantum Hamiltonians based on n > 1 multiplets. In that case the
Zo x Zs-graded symmetry directly affects the statistics of the particles and the construction of
the, properly (anti)symmetrized, multiparticle wave functions. It implies measurable physical
consequences (about the energy eigenvalues and their degeneracies, the partition function and the
chemical potentials, etc.). In the next forthcoming paper, currently under writing, of this series
devoted to Zo x Zs-graded mechanics, we will present the distinct signatures of Zo x Zo-graded
symmetry in multiparticle quantum Hamiltonians. In so doing we will be able to determine the
experimentally testable consequences of Zo X Zo-graded symmetry within this class of theories.
This work and the results here presented are the necessary steps in this line of research.
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Appendix: reminder of Z, x Z,-graded superalgebras

We summarize for completeness, following [33], the basic properties of the Zgs x Zg-graded
superalgebras and conventions used in the text.



CBPF-NF-003/20 27

A Zy x Zo-graded Lie superalgebra G is decomposed as

G = Goo® G0 D Go1 @911 (A1)
It is endowed with the operation [-,-} : G x G — G satisfying, for any g, € G, the properties

[9as 96} = Gags — (=1)"P gbga,
(=1)7ga, [96, 93} + (=1)"[gb, [9es ga}} + (=1)7T[ge, [ga, go}} = 0. (A2)
The first equation gives the Zy x Zo-graded (anti)commutators; the second equation gives the

Zo x Zs-graded Jacobi identity. The generators gq, gs, g. respectively belong to the sectors
Ga, gg, Gy, where @ = (o, az) for a2 = 0,1 and G5 = Ga,a, (and similarly for 3, 7).

The scalar product & - 3 is defined as
a - 5 = 041,31 + 06252. (A3)
For the (anti)commutator one has [ga, gv} € G5, 5> with the vector sum defined mod 2.

According to the definitions, the Zo x Zg-graded (anti)commutators [A, B} between two
graded generators A, B are read from the table

A\B| 00 | 10 01 11
00 [7 ] [7] [7] ['7 ]
0 LTS (A4)
01 [a ] [?] {7} {'7 }
11 [7] {a} {v} ['7 ]
Let V be a Zs x Zo-graded vector space such that
Vo= Voo® Vio® Vo1 @ Vi, (A.5)

with v,v" € V of respective ij, i'j’ gradings. If kl is the grading of the operator M : V — V,
where v/ = Mv, then we have, mod 2,
i'=i+k, i=j+L (A.6)

In the paper we consider the “one-dimensional Zy x Zs-graded supertranslation algebra” with
generators H € Gy, Z € Gi11, Q10 € Gi0, Qo1 € Go1 and nonvanishing (anti)commutators

{Q10, Q10} = {Qo1, Qo1} = 2H, [Q10, Qo1] = —2Z. (A7)
The algebra

{Q10, Q10} = {Qo1, Qo1} = 2H, [Q10,Qo1] = [H, Qo] = [H, Q0] =0, (A.8)

with generators H, Q10, Qo1 and vanishing commutator between @19, Qo; is referred to (following
[23,38]) as “the Beckers-Debergh algebra”.

In a 4 x 4 matrix representation of the Zy x Zs-graded superalgebra the nonvanishing entries
(which can be either numbers or differential operators) of the G;; graded sectors are accommo-
dated according to

*= 0 0 0 0 = 0 O
0 = 0 O *= 0 0 0
0 0 0 = 0 0 = 0
0 0 = O 0 0 0 =
0 0 0 = 0 0 = 0
Gio = <000 I Go1 = 0«00 |’ (A.9)
0 «= 0 0 *= 0 0 0
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In the text the needed matrices are conveniently expressed as tensor products of the 4 real, 2 x 2
split-quaternion matrices I, X, Y, A given by

e (E0) () (1) A (5 ) am
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