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Magnetic fluctuations in a non-magnetized gaseous plasma is revisited and calculated without any
approximation, based on the fluctuation-dissipation theorem. Also the simultaneous dependence of
this intensity on the plasma and on the collisional frequencies is discussed. Finally, the total emitted
plasma energy is compared to the Stefan-Boltzmann law of a pure black-body.

I. INTRODUCTION

Our universe is filled with magnetic fields present in almost all galaxies and clusters of galaxies, which are essential
for many physical processes, such as synchrotron radiation generated by astronomical objects like pulsars and quasars.
One possible explanation for these fields is built by considering an initially weak field, which is amplified by a dynamo
mechanism [1–4]. However, this process needs a so-called seed field. These seed fields are presumed to be generated
shortly after the Big Bang. Several theoretical explanations of how they were created can be found in the literature,
such as the Biermann mechanism [5], supernova explosion [6–8], electromagnetic fluctuations in plasma [9] and others.
Considering this last topic, Tajima, et al., in 1992, [10] noted a lack of a concrete expression of the low-frequency
spectrum of fluctuations of magnetic fields in thermal plasma and argued that this low-frequency spectrum can be
the origin of magnetic fields in the Universe.

Fluctuations of physical quantities near zero frequency have been investigated by several authors since the papers
of Johnson [11] and Nyquist [12]. A general theory on the fluctuation-dissipation theorem, which will be the starting
point of this paper, was developed by [13]. To the best of our knowledge, an approximated expression for the low-
frequency spectrum of magnetic fields fluctuations in a thermal plasma was obtained for the first time by [10]. They
found a peak around ω = 0 magnetic fluctuation which was interpreted as the evanescent energy component of
electromagnetic fluctuations “screened” in plasma, below the plasma frequency. The impact of such a result into the
cosmic microwave background was then investigated by [14]. Although in these two references the authors claim that
the fluctuations were rigorously computed, several approximations were indeed made and they were not able to get a
unique formula covering both the low- and high-frequency spectrum. Some criticism concerning Tajima’s results can
be found in Refs. [15, 16], where a new model was developed including thermal effects as well as collisional effects.

The aim of this paper is very specific. We reevaluate the derivation of the spectrum of magnetic fluctuations, in the
case of electron-positron plasma, avoiding any approximation in the low-frequency region and also in the transition
between the low- and the high-frequency spectrum. Several different behaviors between ours and previous results
[10, 16], mainly in the low-frequency part of the spectrum, are found and discussed. We are also able to make new
quantitative predictions, such as how the energy density of the magnetic fields deviates from the Stefan-Boltzmann
law of an ideal black-body.

II. THE FIRST PREDICTIONS

The fluctuation-dissipation theorem developed by [13] can deal with the thermal fluctuations inside a plasma in
or near thermal equilibrium. The expression for the magnetic field fluctuation in a homogeneous isotropic non-
magnetized equilibrium plasma was obtained by [10] looking at waves in such a plasma. In an electron-positron
plasma, for example, the magnetic fluctuations in wavenumber and frequency space are given as a function of the
plasma temperature T by
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〈B2〉~k,ω
8π

=
2~ω

e~ω/kBT − 1
ηω2

p ×

(1)

× k2c2

(ω2 + η2)k4c4 + 2ω2(ω2
p − ω2 − η2)k2c2 + [(ω2 − ω2

p)2 + η2ω2]ω2

where k
B

is the Boltzmann constant, and ωp and η are, respectively, the plasma and collisional frequencies. In an
electron-positron plasma, the plasma frequency ωp is given by the relation ω2

p = ω2
pe+ + ω2

pe− ; since ωpe+ = ωpe− we

have

ω2
p = 2ω2

pe; ω2
pe =

ne4πe
2

γme
; and γ = 1 +

kBT

mec2

with e and me being, respectively, the charge and the mass of the constituents (electrons and positrons) of the plasma,
ne being the electron (positron) density. In addition, the collisional frequency is

ηe− = ηe+ = η = ηe = 2.91× 10−6 ne T
−1.5 ln(Λ) (2)

with

ln(Λ) = ln
(
4πneλ

3
D

)
where λD is the Debye’s length

λD =

√
kBT

4πnee2
(3)

Integrating the former equation in d~k = 4πk2dk we get (the Fourier transform)

S(ω) ≡ 〈B
2〉ω

8π
=

∫
d~k

(2π)3

〈B2〉~k,ω
8π

≡
∫ ∞
0

S(ω, k)dk (4)

Thus we have to solve the following integral:

S(ω) ≡ 2~ω
e~ω/kBT − 1

η

(2π)3
ω2
p

c2
×

(5)

×
∫ ∞
0

(4π)k4dk

(ω2 + η2)k4 +
2ω2

c2
(ω2
p − ω2 − η2)k2 +

[
(ω2 − ω2

p)2 + η2ω2

c4

]
ω2

The integral over wavenumbers to be solved in Eq. (5) clearly shows a high wavenumber linear divergence. According
to [10], this is expected since the derivation is based on classical fluid equations of motion and the constant collision
frequency η is considered to be independent of k. However, they prefer to carry on their analyzes in the simpler
phenomenological approach. To overcome the large k dependence, they first take the limit η → 0 and then they
integrate over k to infinity, which corresponds to the vanishing cross section of collisions as k → ∞. This is a very
delicate point and we will turn back to this point in Section III. For both the high frequency and high wavenumber
limits the authors emphasized that the expression of Eq. (1) has a substantial value only where ω2 − c2k2 − ω2

p ' 0.
The combined high-frequency and high wavenumber limits were got by letting η → 0. The expression for the low-
frequency spectrum was obtained by breaking up the k integral into two intervals, by introducing what the authors
called “a cutoff value” kcut, with xcut ≡ kcutc/ωpe. Technically, this kcut is not really a cutoff. It would be better to
be called a “convergence point” which was arbitrarily chosen by Tajima, et al. [10, 14] to obtain a smooth connection
at the joining point of the low and high spectrum. Although these authors sustain that their results do not critically
depend on this upper limit, it was shown in Ref. [16] that this is not true. In Ref. [10, 14], the integration from 0 to
kcut, η was kept finite while in the integral from kcut to ∞ the approximation η → 0 was considered. The expressions
obtained for the high and low parts of the spectrum were, respectively:
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〈B2〉ω
8π

=
T

2π
δ(ω)

∫
ω2
p

ω2
p + c2k2

k2dk +
1

2πc3
~

e~ω/kBT − 1
(ω2 − ω2

p)3/2 (6)

and

S(ω′) ≡ 〈B
2〉ω′

8π
=

1

π2

~ω′

e(~ω
′
pe/kBT )ω′ − 1

2η′
(ωpe
c

)3
×
∫

x4

(ω′2 + η′2)x4 + · · ·
dx+

(7)

+
~(ω′2 − ω′2p )3/2

2πe(~ωpe/kBT )ω′ − 1

(ωpe
c

)3
×Θ(ω −

√
c2k2cut + ω2

p)

where Θ is the Heaviside step function; η′ ≡ η/ωpe, ω′ ≡ ω/ωpe, and ω′p ≡ ωp/ωpe.
Defining, as in Refs. [10, 16], the normalization factor,

S0 =
ω2
pekBT

c3
(8)

we can numerically reproduce the previous, Eq. (7), results of those references as shown in Fig. 1.

FIG. 1. Plot of the normalized magnetic field spectrum of Eq. (7) made by us (full line), compared to the plot given in Fig. 1.b
of Ref. [16], both ploted for T = 7× 109 K, ne = 4.6× 1030 cm−3 (γ = 1).

Finally, the zero frequency limit of the magnetic fluctuations is give by

lim
ω→0

〈B2〉ω
8π

=
~ω′

π2(e~ωpeω′/kBT − 1)
2
(ωpe
c

)3 1

η′

∫ xcut

0

dx (9)

At this point the frequency spectral intensity was plotted for a temperature T = 1010 K, by requiring that the
value of kcut (or xcut) provide a smooth behavior at the joint between the low-frequency spectrum and the black-
body spectrum. The choice was kcut ∼ ωpe/c or (xcut ∼ 1). The result for other temperature values were presented
in another paper by [14]. The main claims by these authors was that the intensity of the spectrum does not vary
sensitively with kcut and that, near ω = 0, the spectrum goes like ω−2. Let us now show our general and exact results.

III. GENERAL RESULT

Our analytical solution for Eq. (5) was obtained by introducing a dimensionless variable y = k/k◦, where k◦ = ω/c,
and reducing the integrand into partial fractions, namely
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S(ω) = Db

∫ ∞
0

y4dy

y4 − 2ay2 + C
= Db

∫ ∞
0

F (y)

f(y) dy
(10)

with D ≡ π−2
(

~ω2

e~ω/k
B

T−1

) (
ω2

p

c3

)
η, a ≡

(
1− ω2

p

ω2+η2

)
, b = (ω2 + η2)−1, C ≡ 1 +

ω2
p

ω2+η2

(
ω2

p

ω2 − 2
)

, F (y) = −2ay2 + C

and f(y) = y4 − 2ay2 + C. The ratio between these two functions is expressed as

F (y)

f(y)
=

A1

y − y1
+

A2

y − y2
+

A3

y − y3
+

A4

y − y4

where yi are the roots of f(y) and Ai = F (yi)/f
′(yi), for i = 1, 2, 3, 4.

A straightforward calculation gives rise to our expression for S(ω), which will be expressed as a function of the
variable ω′ = ω/ωpe to facilitate future comparisons, i.e.,

S(ω′) =
1

π2ω′ 2

(
~ω′ 3

e(~ωpe/kBT )ω′ − 1

)(ωpe
c

)3
×

×
{

2λc
η′

ω′ 2 + η′ 2
+ f(ω′)

[
h(ω′)

√
g(ω′) + h(ω′)− 2η′

√
g(ω′)− h(ω′)

]}
(11)

where λc = kcutc/ωpe, and f , g and h are functions defined by:

f(ω′) =
π

2
√

2

ω′ 1/2

(ω′ 2 + η′ 2)3/2

g(ω′) = (ω′ 2 + η′ 2)1/2
√
ω′ 2(ω′ 2 + η′ 2) + 4(1− ω′ 2)

h(ω′) = ω′(ω′ 2 + η′ 2 − 2)

The constant λc represents, in our scheme, the cutoff to avoid the linear divergence in the wavenumber variable and,
thus, must assume a high value. For us, λc has the same purpose of the xmax = kmaxc/ωpe used in the Tajima et
al works, where kmax is introduced to avoid in a Coulomb collision that, for small distances, the Coulomb energy
exceeds the kinetic energy. This occurs approximately for the closest approximation distance of a test particle and an
electron in the plasma (See Ref. [16]). Therefore, λc cannot be of the order of 1. For the sake of future comparisons,
we will fix the following plasma parameters: T ' 1010 K, ne ' 4.8× 1030 cm−3 and λc ' 2 444.4. In any case, we can
show that we have a small dependency of Eq. (11) with the λc value as can be inferred from Fig. 2.

FIG. 2. Plot of ln [S(ω′)/S0], where S(ω′) is given by Eq. (11). For the following parameters: 0 < ω′ ≤ 10, γ = 2.18724,
T = 7× 109 K, ne = 4.6× 1030 cm−3 and a huge range of λc values.

Our exact results, based on Eq. (11), are plotted in Figs. 3 and 4, considering, respectively, two different ranges for
ω′ (0 < ω′ < 10, and 0 < ω′ < 100), with S0 defined in Eq. (8):
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FIG. 3. Plot of ln [S(ω′)/S0], where S(ω′) is given by Eq. (11), for the following parameters: 0 < ω′ ≤ 10, γ = 2.18724,
T = 7× 109 K, ne = 4.6× 1030 cm−3 and λ = 2 444.4.

FIG. 4. Plot of ln [S(ω′)/S0], where S(ω′) is given by Eq. (11), for the following parameters: 0 < ω′ ≤ 100, γ = 2.18724,
T = 7× 109 K, ne = 4.6× 1030 cm−3 and λ = 2 444.4.

They are both in good agreement with the results of Ref. [16].
Lastly, in order to study the behavior of S by varying both the plasma’s frequency and temperature, we have to

come back to the variables ω and T , since ω′ = ω′(T ).
We still need to know how the plasma density ne varies with the temperature T .
Following the book of Paul M. Bellan [17], inside the plasma, i.e., for |x| � λD, it is assumed that the electron

distribution function is Maxwellian with temperature T . Since the distribution function depends only on constants
of the motion, the one-dimensional electron velocity distribution function must depend only on the electron energy
mv2/2 + qe〈ϕ(x)〉, a constant of the motion, and so must have the following dependence

fe(v, x) =
n◦

2πkBT/me
exp

[
−
(
mv2/2 + qe〈ϕ(x)〉/kBT

)]
and the electron density is [Eq. (2.109), p. 55 of Ref. [17]]

ne(x) =

∫ ∞
−∞

dvfe(v, 0) = n◦ exp(−qe〈ϕ(x)〉/kBT )

Let us take form the mean plasma density the expression

ne = n◦e
−λ/kBT (12)
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The parameters n◦ and λ are fixed by using two different inputs [16]: ne = 4.8 × 1030 for T = 1 × 1010 K, and
ne = 4.6× 1030 for T = 7× 109 K. We have to solve the system

4.8× 1030 = n◦ e
−λ/861730

4.6× 1030 = n◦ e
−λ/603211

which has the following solutions:

n◦ = 5.30× 1030 cm−3; and λ = 8.56× 104 eV (13)

Thus, in our future calculations, we will adopt the following expression for a(T ):

a =
2e~
kBT

(
2πn◦
γme

)1/2

e−kB/(2kBT ) (14)

So, using Eqs. (12), (13) and (14), we get the result shown in Figure 5 for S(ω, T ).

FIG. 5. Plot of S(ω, T ) considering the same parameters as the Fig. 4 but with variable temperature.

In Fig. (6) it is shown how our prediction depends on the choice of the γ factor.

FIG. 6. Our prediction for ln[S(ω′)/S0] for γ = 1 and γ = 2.18724.

Finally, the prediction of our model compared to that of Ref. [16] is shown in Figure 7. One should remember that
the prediction of Ref. [16] is based on a model that extends that of Refs. [10] and [14] by including both thermal and
collisional effects in the plasma description. Notice, however, that when this prediction is compared to ours we get a
quite good agrement, which means that the previous discrepancy between the previously cited papers is mainly due
to the approximations introduced in Refs. [10] and [14] which were not necessary in our approach.
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FIG. 7. Plot of the normalized magnetic field spectrum of Eq. (11) made by us (full line), compared to the plot given in Fig. 4.b
of Ref. [16], both for T = 7× 109 K, ne = 4.6× 1030 cm−3 and λ = 2 444.4 (γ = 1).

IV. SOME USEFUL LIMITS

A. The limit ω′ → 0

Let us calculate now the limit ω′ → 0, given by Eq. (11).

S◦

∣∣∣
ω′'0

=
1

π2

(ωpe
c

)3 ~ω′

1 +
~ωpe
kBT

ω′ − 1

' 1

π2

ω2
pe

c3
kBT

Thus,

S(ω′)
∣∣∣
ω′'0

= S◦

∣∣∣
ω′'0

×


2λc
η′

+ f(ω′)
∣∣∣
ω′'0︸ ︷︷ ︸

0

×[· · · ]


or, finally, our prediction is

S(ω′)
∣∣∣
ω′'0

=
2

π2

ω2
pekB

c3η′
λc T

This is exactly what Tajima has found (kB = 1) [18]

lim
ω→0

< B2 >ω
8π

=
2

π2

ω2
pe

c3η′
xcut T

with

xcut =
kcutc

ωpe
⇒ xcut ' 1

while for us

ckmax

ω
=
λcωpe
ω

⇒ λc =
ckmax

ωpe

which is the same factor.
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B. The η′ → 0 limit of S(ω′)

Let us now determine the η′ → 0 limit of S(ω′), given by Eq. (11). It is given by

S(ω′) =
S◦
ω′ 2

f(ω′)h(ω′)
√
g(ω′) + h(ω′)

∣∣∣
η′=0

where,

S◦
ω′ 2

=
1

π2

(
~ω′

e(~ωpe/kBT )ω′ − 1

)(ωpe
c

)3

f(ω′)→ π√
2

√
ω′

ω′ 3

h(ω′)→ ω′(ω′ 2 − 2)

g(ω′)→ ω′
√
ω′ 4 + 4− 4ω′ 2 = ω′(ω′ 2 − 2)

Thus,

S(ω′)→ 1

π2

(
~ω′

e(~ωpe/kBT )ω′ − 1

)(ωpe
c

)3 π√
2

√
ω′

ω′ 3
ω′(ω′ 2 − 2)

√
2ω′(ω′ 2 − 2)

or

S(ω′) =
1

π

(
~(ω′ 2 − 2)3/2

e(~ωpe/kT )ω′ − 1

) (ωpe
c

)3
(15)

This is exactly 2 times the second term of the principal formula of Tajima et al, which appears multiplied by the

Heaviside function θ(ω −
√
c2kcut + ω2

p), which, for us, is just θ(ω′ 2 − 2) [19].

If ω′ �
√

2 (or in the limit ωpe → 0), we get the well known Planck distribution [20]

SPlanck(ω′) =
1

π

(
~ω′ 3

e(~ωpe/kT )ω′ − 1

) (ωpe
c

)3
Thus, asymptotically, this result gives rise to the Stefan-Boltzmann law, ET ∝ T 4, if we integrate SPlanck(ω′) over

ω′. However, fot the plasma, we have to integrate Eq. (15). It is clear that the contribution to this integral from the

range
√

2 ≤ ω′ ≤ 10, should yield a small deviation from this law. Let us now demonstrate it and determine its value.

V. DEVIATION FROM THE STEFAN-BOLTZMANN LAW

We have to solve the following integral to calculate the energy density of the cold plasma, ET , with S(ω′) given by
Eq. (15):

ET =

∫ ∞
√
2

S(ω)

2π
dω

Rewriting S(ω′) as a function of ω, S(ω),

S(ω) =
1

π

(
~(ω2 − 2ωpe)

3/2

e(~ω/kT ) − 1

) (
1

c

)3
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So,

ET =

∫ ∞
√
2

S(ω)

2π
dω =

~
2π2c3

∫ ∞
√
2ωpe

(ω2 − 2ω2
pe)

3/2

e~ω/kBT
dω (16)

Let us make

ω =
kBT

~
z ⇒ dω =

kBT

~
dz

In terms of this new variable z,

ET =
1

2π2~3c3
(kBT )4

∫ ∞
a

z3(1− a2/z2)3/2

ez − 1
dz︸ ︷︷ ︸

J

(17)

where a(T ) is given by Eq. (14).
The integral of Eq. (17) can be numerically solved and we find J = 6.42733. For the values of T we are considering

in the range 109− 1010 K, a2 ' 0.0003. So, we can made the approximation below, which can be numerically verified
to be a good approximation. Indeed,

J '
∫ ∞
a

(z3 − 3a2z/2)

ez − 1
dz = 6.42576

So, we have to compute two integrals:

J =

∫ ∞
a

z3

ez − 1
dz − 3a2

2

∫ ∞
a

z

ez − 1
dz

It is convenient to have the integral from 0 to ∞ and, then, let us define y = z − a. With this change,

J = e−a
{∫ ∞

0

(y + a)3

ey − e−a
dy − 3a2

2

∫ ∞
0

(y + a)

ey − e−a
dy

}
All those integrals are particular cases of the integral ([21], p. 354, Eq. (22)):∫ ∞

0

xp−1

erx − q
dx =

1

qrp
Γ(p)

∞∑
k=1

qk

kp
= Γ(p)r−pΦ(q, p, 1)

if [p > 0, r > 0,−1, q, 1], where Φ is the Lerch function ([21], p. 1039), and Γ is the usual gamma function. In our
case, r = 1 and q = e−a. Knowing this general result, we have to compute:

J =

∫ ∞
0

y3 + 3ay2 + 3a2y + a3

ey − e−a
dy︸ ︷︷ ︸

J1

+

∫ ∞
0

y + a

ey − e−a
dy︸ ︷︷ ︸

J2

J2 = Γ(2)Φ(e−a, 2, 1) + aΦ(e−a, 1, 1)

and

J1 = Γ(4)Φ(e−a, 4, 1) + 3aΓ(3)Φ(e−a, 3, 1) + 3a2Γ(2)Φ(e−a, 2, 1) + a3Φ(e−a, 1, 1)

But we know also that, in general,

Φ(e−a, n, 1) =
Lin(e−a)

e−a

where Lin(x) is the polylogarithm function.
Therefore, in terms of this function, J = J1 + J2 can be written as
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J = 6 Li4(e−a) + 6aLi3(e−a) +
3

2
a2 Li2(e−a)− 1

2
a3 Li1(e−a) (18)

Knowing how a depends on T , Eq. (14), the above equation is the general expression for the T -dependence of our
result given by Eq. (17), in the interval 2 ≤ ω′ ≤ 10. This dependence was not discussed by Tajima. Note that the
above equation gives the same numerical result previously found, i.e., J = 6.42576. Therefore,

ET =
1

2π2~3c3
(kBT )4 = 6 Li4(e−a) + 6aLi3(e−a) +

3

2
a2 Li2(e−a)− 1

2
a3 Li1(e−a)

or, in a more convenient formula,

ET =

(
2σ

c

)
T 4 × 15

π4

[
6 Li4(e−a) + 6aLi3(e−a) +

3

2
a2 Li2(e−a)− 1

2
a3 Li1(e−a)

]
(19)

where we have introduced the usual Stefan-Boltzmann constant σ:

σ =

(
π2k4B

60~3c2

)
= 5.670× 10−5 erg · cm−2 · s−1 ·K−4

To plot Eq. (19) we have used the expression for a(T ) given by Eq. (14).

FIG. 8. Deviation from the Stefan-Boltzmann law.

Notice that the expression for plasma radiated energy, ET (in red in the Fig. 8), is below the curve for the magnetic
component of the black-body radiation (in blue), (2σ/c)T 4, for an intermediate region of temperature.

VI. DISCUSSIONS

In this paper, we have computed the spectrum of magnetic fluctuations of a homogeneous cosmic plasma avoiding
any approximations. Several different behaviors between our results and the previous one obtained by [14], mainly
in the low-frequency part of the spectrum, are found and discussed. It is important to stress that the exact result
indicates that the peak of the zero-frequency spectrum is not so sensitively to the cut-off value λc, as shown in Fig. 2.
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