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Abstract

The ground state energy, its respective eigenfunction and some specific parame-

ters of ionized muonic molecules formed by proton-proton, deuterium-deuterium

and tritium-tritium nuclei plus a negative muon confined in a two-dimensional

spatial region are calculated. A 2D Coulombic potential of the type ln(r) is

considered for the electrostatic interaction, instead of the usual 3D 1/r poten-

tial. The two-dimensional effective potentials of these three-body molecules

are analytically calculated within a quasi-adiabatic approximation. Then, the

resulting Schrödinger equation is numerically solved for each kind of molecule

with a slightly modified Numerov method. The results are confronted with

those got for the same molecules in 3D and 2D, in both cases adopting the 1/r

Ansatz. On the one hand, these comparisons put in evidence that the choice

of the potential energy significantly influences the nuclear fusion probability.

In particular, we find, for the ttµ molecule, that this probability is 109 times

greater using the two-dimensional ln(r) Coulombic potential compared to the

prediction in three-dimensions with the 1/r potential. In addition, for this same

molecule, the tunnelling ratio is 2× 104 greater than in 3D. On the other hand,

all these results put in evidence also the distinguished role of the “centrifugal

potential” in the 2D effective potential, showing that the geometrical nature of

planar space plays a quite relevant role for the improvement of fusion rates in

2D.
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1. Introduction

The general idea that a particular mechanism of nuclear fusion can be related

to muon physics is a good example of a physical process proposed for a specific

explanation which, as time goes on, acquire per se a major intrinsic interest,

opening therefore a new promising research field: the search for sustainable

energy production through cold fusion catalyzed by muon captures.

In 1947, Lattes, Occhialini and Powell, discovered the pion, π−, from cosmic

rays. Stopped in the photo-emulsion it gives rise to a muon and an antineu-

trino [1]. Historically, Frank [2] proposed that the µ had a probability of been

captured by deuterons (d) presented in the photo-emulsion, originating a dµ

atom. Like neutrons, these atoms could go through matter and can easily go

inside molecules. If it reaches a close distance to a proton, one might observe

the following fusion reaction: dµ+ p→ 3He + µ+ 5.5 MeV [2].

In 1948, Sakharov suggested a fusion mechanism from the nuclear reaction

produced in liquid deuterium, d + dµ → 4He + µ [3]. Due to the fact that the

µ is 200 heavier than the electron, this makes the nuclei of this new molecule

much closer than when they were formed by an electron (' 500 fm in this case),

thus increasing the probability of the nuclei to fuse [4, 5].

From the experimental point of view, the first muon catalyzed fusion was

observed by chance by Alvarez and collaborators [6]. Just in 1973, Matveenko

[7] and Ponomarev [8] developed a high-precision numerical method for the

description of a three-body Coulombic system.

The muon catalysed fusion (µCF) is currently considered as an effective

and reliable way of achieving a sustainable low temperature nuclear fusion pro-

cess [4, 9, 10]. Little progress has been made in recent past years, since the

same old objection still holds on: on the one hand muon production requires

a considerable amount of energy, on the other hand the up to now estimated

rates for each individual fusion process are still relatively small, so that the

whole process is argued not to be profitable, considered the muon-life-time

[11]. In any case, there are many attempts to improve the energy efficiency

of this process [12, 13, 14, 15, 16, 17], including a good perspective using a new

type of laser-driven muon generator [18]. Some review articles might be useful

[5, 9, 10, 19, 20, 21].

The general scope of this article is to shed light on the above objection.

In particular, we start from a different approach, focusing on the systematic
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calculation of the elementary processes involved in the muon-catalyzed nuclear

fusion choosing the electrostatic ln(r) potential. This means that, in this paper,

the following effects on the µCF are not taken into account: the influence of

temperature [12, 13, 14, 22, 23]; the probability of muon sticking the produced

helium [24, 25]; and the possibility of target-density effects [26, 27].

In this paper, first of all, we want to investigate the influence of the space

dimensionality of the system on the fusion probability. In what sense the prob-

ability of fusion could vary by going from a 3D to a 2D molecular model? Can

one improve the fusion rate by considering a strictly planar system?

Before going on, it is relevant to stress that, over the recent past years,

planar Physics and truly two-dimensional systems have attracted a great deal of

attention in connection with graphene [28, 29, 30], and with Quantum Hall Effect

[31, 32]. All these quantum systems point to consider that the correct Coulomb

inter-electronic potential should be the ln(r) potential [33], rather than assuming

the validity of the usual 3D-dependence in planar systems, corresponding to the

1/r potential [34, 35].

Turning back to the scope of our paper, first of all, we need to consider a

two-dimensional model of muon-catalyzed fusion. Moreover, even considering

a 2D configuration, we must investigate the influence of the Ansatz for the

electric potential, which could be of the type 1/r or ln(r) [36], on the fusion

rate. This kind of dependence in another planar system (quantum dots) was

recently investigated and discussed in two papers [37, 38].

Secondly, instead of giving rough estimates, the model developed here is

straightforwardly solved as a quantum mechanical problem. In this sense, we

made an effort to obtain an analytical expression for the effective interaction

potential between the two molecular nuclei that appears in the Schrödinger

equation describing the model of the three-body muonic molecule. The final

planar dynamical equation will be solved by using Numerov’s numerical method

[39, 40], which allows us to determine the ` = 0 wave functions, which deserves

special attention as will be clear throughout the paper. In such case, all the

predicted probabilities of fusion for different molecules, as well as the tunnelling

coefficients for one of the molecular nucleus, are actually computed and not

estimated as in all previous papers [11].

A 2D model of the muonic molecule is constructed in Section 2 adopting

a quasi-adiabatic approximation, i.e., considering that the movement of the
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nucleus is much slower than that of the muon. All the analytical calculations

of this model are presented in Section 3. The numerical results are given in

Section 4 and the concluding remarks, in Section 5.

2. A two-dimensional model for µCF

The time-independent two dimensional Schrödinger equation which describes

a three-body quantum system formed by two positive nuclei (in this work we

will use proton, deuteron or triton) and one negative particle (electron or muon)

orbiting them is:

[
− ~2

2m1
∇2

1 −
~2

2m2
∇2

2 −
~2

2m3
∇2

3 + V (~r13, ~r23, ~r12)

]
Ψ(~r13, ~r23, ~r12) =

= ETΨ(~r13, ~r23, ~r12) (1)

with 1 and 2 being the indices of the two positive nuclei and 3 denotes the

negative particle, ~r13 = ~r3 − ~r1, ~r23 = ~r3 − ~r2 and ~r12 = ~r2 − ~r1. The 2D

Coulombic potential of mutual interactions is

V (~r13, ~r23, ~r12) = V0 ln
r13

r0
+ V0 ln

r23

r0
− V0 ln

r12

r0
(2)

which has the advantage of ensuring, at least at the classical level, the electric

charge (e) conservation.

In a quasi-adiabatic model, the muon is assumed to follow adiabatically the

movement of the two nuclei until the fusion occurs [41, 42]. In this way one

can considered that, for the muon, the two nuclei are at fixed positions. Thus,

neglecting the two first kinetic terms of Eq. (1), the Schrödinger equation that

describes the motion of the muonic part of the molecule:[
− ~2

2m3
∇2

3 + V0 ln
r13

r0
+ V0 ln

r23

r0

]
Ψ( ~r13, ~r23) = EΨ( ~r13, ~r23) (3)

As in 3D model of µCF, another approximation will be made in which one

consider that the wave function of the molecule is composed by the sum of

the wave functions of the two hydrogen-like atoms, ψ± = N±(ψa ± ψb); one

composed by the first nucleus and the muon, ψa, and the other, ψb, composed

by the second nucleus and the (same) muon [41].
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We are now able to find the expectation value of the energy of Eq. (3) in the

states ψ±, which will be denoted W±, following the notation of [41]:

W± = E0 +
D ± E
1±∆

(4)

where E0 is the ground state energy of the respective atom. Its value depends

on the kind of atom we are considering (pµ, dµ, or tµ).

The factors D and E to be calculated are the direct integral and exchange

integral, respectively, defined by the integrals:

D =

∫ (
ln(ρb)ψ

2
a + ln(ρa)ψ2

b

)
d2DV (5)

E =

∫ (
ln(ρa)ψaψb + ln(ρb)ψaψb

)
d2DV (6)

and the normalizing factor (called the overlap integral ∆) is

1±∆ =
|N±|−2

2
=

∫ (
|ψa|2 + |ψb|2 ± 2ψaψb

)
d2DV (7)

where we have denoted ra = r13, rb = r23, ρa = ra/a
∗
0 e ρb = rb/a

∗
0, with

a∗0 ' a0/206 being the modified Bohr’s radius.

In Eq. (1), we can substitute the muonic part given by the left-hand side of

Eq. (3) by the expectation value of the energy W±, Eq. (4). This leads to the

following dimensionless radial Schrödinger equation for the relative motion of

the two nuclei: {
d2

dρ2
+ ε− Veff

}
u(ρ) = 0 (8)

with

ψ(ρ, θ) =
u(ρ)
√
ρ
e±i`θ

and

Veff = − µ

m3
[− ln ρ+W±] +

(`2 − 1
4 )

ρ2
(9)

Here µ is the reduced mass of the two nuclei and m3 the mass of the muon or the

electron. Insofar we are treating muonic molecules, notice that the dimensionless

parameter ε is given by ET /(e
2/2a∗0). This equation describes, in general, any

molecule composed of two positive nuclei of the same type and just one negative

particle orbiting them. In this paper, for simplicity, the focus is on the ppµ, ddµ

and ttµ molecules. We hope to investigate other molecules with different nuclei,

like dtµ in another publication.

The different values of the µ/m3 factor for each type of molecule involved in

the forthcoming calculations are given in the Table 1.
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Table 1: Values of the ratio µ/m3 corresponding to different molecules

Molecule µ/m3

ppe 918.0763

dde 1835.2415

ppµ 4.4401

ddµ 8.8758

ttµ 13.2925

3. Analytical calculations

Once in our model the wave function of the muonic molecule is assumed

to be formed by the sum of two wave functions of two hydrogen-like atoms

(ψa, ψb), the first thing we need is to determine them in 2D. Therefore, we will

start solving the Schrödinger equation for hydrogen like atom in two dimensions

given by: [
− ~2

2m1

~∇2
1 −

~2

2m2

~∇2
2 + V (~r1, ~r2)

]
Ψ(~r1, ~r2) = ETΨ(~r1, ~r2) (10)

with the 2D Coulombic potential of interaction being

V (r) = V0 ln

(
|r|
L

)
From Eq. (10), it is straightforward to write the radial Schrödinger equation for

this atom, in dimensionless units (ρ), as

d2u(ρ)

dρ2
+

[
E0 − ln (ρ)−

(`2 − 1
4 )

ρ2

]
u(ρ) = 0 (11)

Numerical solutions for the ground state energy and wave function of Eq. (11)

were obtained by using the Numerov method. The resulting ground state ener-

gies E0 for different molecules are given in Table 2.
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Table 2: E0 values corresponding to different atoms; the value corresponding to the atom

composed by an electron is in Rydberg unit, although those values for muonic atoms are

shown in modified Rydberg units, Ry∗ ' Ry/206

Atom E0

pe 0.7103Ry

de 0.7103Ry

dµ 0.7503Ry∗

pµ 0.7903Ry∗

tµ 0.7370Ry∗

The ground state wave function, obtained by numerically solving Eq. (11)

with the Numerov method, is plotted as a continuous line in Fig. 1.

Figure 1: The continuous line show the numerical solution of Eq. (11) for the ground state

wave function of hydrogen atom in 2D, and the dashed one is the interpolated function, given

by Eq. (12).

In order to get analytical results, this wave function can be well approx-

imated by the following equation, which is represented by the dashed line in

Fig. 1.

u(ρ) = 120ρ e−(ρ+2) (12)
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Within this interpolation, the wave functions ψa and ψb of the two hydrogen

atoms can be written, in terms of u(ρ), as

ψa(ρ) =
120

e2

√
ρa e

−ρa ; ψb(ρ) =
120

e2

√
ρb e
−ρb (13)

where we have used the well known relation ψ(ρ) = u(ρ)/
√
ρ in 2D. The nor-

malized wave functions are then given by

ψa(ρ) =

√
2

π

√
ρae
−ρa ; ψb(ρ) =

√
2

π

√
ρbe
−ρb

Before we can solve Eq. (8), we need to compute the W± expression, by

solving the three integrals given by Eqs. (5, 6, 7). To do this it is appropriate,

as in Ref. [41], to introduce the prolate coordinate system, namely

ρa + ρb
R/a∗0

= ξ ;
ρa − ρb
R/a∗0

= η

with 1 ≤ ξ < ∞ and −1 ≤ η ≤ +1. Denoting ρ ≡ R/a∗0, in this coordinate

system, the two-dimensional volume element (d2DV ) can be written as

d2DV =
ρ2

4

(ξ2 − η2) dξdη√
(ξ2 − 1)(1− η2)

(14)

Once these new coordinates are introduced, we are ready to compute all the

integrals in Eqs. (5), (6) and (7). From now on, unless differently stated, all the

numerical integrations were made by using the software Mathematica, version

11.3.

Let’s start by solving Eq. (7). The first two integrals of |ψa|2 and |ψb|2 are

equal to 1, since these wave functions are normalized. So, rewriting Eq. (7) in

the prolate coordinate system, we get:

∆ =
ρ3

2π

∫ 1

−1

dη√
1− η2

∫ ∞
1

(ξ2 − η2)
3
2 e−ξρ√

ξ2 − 1
dξ (15)

To solve the integral in dξ, we expanded it up to O(η7), using

(ξ2 − η2)
3
2 ' ξ3 − 3

2
ξη2 +

3

8

η4

ξ
+

1

16

η6

ξ3
(16)

The accuracy of this approximation was tested by solving numerically the inte-

gral of Eq. (15) and comparing this result with that analytically obtained, re-

sulting an error of ' 2.9%. In addition, the final analytical solution of Eq. (15)
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depends also on the use of the Laurent series approximation for the denominator

on the right side of Eq. (15)

1√
ξ2 − 1

' 1

ξ
+

1

2ξ3
+

3

8ξ5
+

5

16ξ7
+O((1/ξ)9) (17)

Therefore, all the integrals contained in Eq. (15), as well as Eqs. (5)-(6) can

be solved in a straightforward way, as shown in Appendix. It is important to

emphasize that, in the whole process of analytical calculation, the results for

the integrals of Eqs. (5, 6, 7) were confronted with numerical calculations (from

Mathematica) to check the efficacy of the approximations introduced. As an

example, in the graphic of Fig. 2, we compare the continuous line, which is the

analytical result for the expectation value of the energy W+, with points nu-

merically generated, showing that, despite the large number of approximations,

we get a correct analytic expression.

Figure 2: Continuous line is the plot of W+ function given by Eq. (4) and the dots are some

of the numerical results for the same expression.

4. Numerical results

In order to investigate whether the probability of having a µCF in 2D can be

bigger than the corresponding prediction in a 3D system or not, we will compute

three different physical quantities:

1. the probability that the nuclei are very close together, namely with a

relative distance of the order of 10 fm (∼ 0.04a∗0) [42];
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2. the transmission coefficient for having a tunnelling effect from the second

well (that on the right of Fig. 2) to the well on the left;

3. the mean distance between the two nuclei in 2D which should be compared

with the 3D prediction.

All the calculations done in this section was made using the Numerov method [40]

in a program developed by the authors using the C++ language and the CERN/ROOT

package, and the graphics were made by running Mathematica Software.

Since we want to compare our 2D result with their three-dimensional anal-

ogous, we start solving numerically the following equation, Eq. (18), describing

the µCF in 3D given by reference [41]:[
d2

dρ2
+

(
ε− µ

m3

(
W 3D
± +

2

ρ

))]
u(ρ) = 0 (18)

with the 3D expected value of energy W 3D
± being

W 3D
± = −2

ρ
+

−1 +
2

ρ
+

−
2

ρ
+ 2

(
1

ρ
+ 1

)
e−2ρ ∓ 2(1 + ρ)e−ρ

1±
(

1 + ρ+
ρ2

3

)
e−ρ


 (19)

A comparison between the effective potential V
(3D)
eff and the V

(2D)
eff , respec-

tively given by Eqs. (8) and (18), considering only the W+ contribution, is

presented in Fig. 3.

Figure 3: Effective potential in 2D (blue) and 3D (orange) in arbitrary units, for the case

` = 0.
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Figure 4: Effective potentials in 2D. One corresponds to W+ choice (orange), for which we

have a second well (1 . ρ . 6), and the other to W− (blue), both in arbitrary units, for the

case ` = 0, and µ/m3 = 1.

One should remember that, in 3D, only the effective potential corresponding

to W+ has a minimum energy, i.e., defines a confining well. This is usually

attributed to the fact that the even wave function ψ+ used to compute the

mean value energy W+ maximizes the electron (or muon) probability density

between the two nuclei, thereby reducing their mutual electrostatic repulsion.

In 2D we have shown that a quite analogous behavior is still valid. The only

qualitative difference (for ` = 0) is that now we have also for W− the same kind

of a very deep well for very small ρ values (Fig. 4).

The graphics for wave functions for several molecules in the ground state we

are considering are shown in Fig. 5, and are in agreement with those of Ref. [42].

Figure 5: Ground state wave function for different molecules. From the biggest maximum to

the lower one we have, respectively: dde, ppe, ttµ, ddµ and ppµ.
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We can now present the solutions of Eq. (8) for different molecules inside

the well that goes to −∞, considering just the W+ contribution. In Fig. 6

the square of the wave functions of the muonic molecules are plotted for the

quantum number ` = 0.

Figure 6: Squared wave functions in 2D for the muonic molecules with the quantum number

` = 0; from the top to the bottom we have: ttµ, ddµ and ppµ molecules. The units of ρ axis

is in modified Bohr radius units (a∗0 ' a0
206

).

In Fig. 7 the square of wave functions for dde molecule is shown only for the

case ` = 0.

Figure 7: Squared wave functions in 2D for the electronic molecule (dde) with the quantum

number ` = 0, the ρ axis is in Bohr radius units (a0).

The next step was to compute the wave functions inside the second potential
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well, as shown in Fig. 8.

Figure 8: Squared wave functions in 2D for different muonic molecules, for ` = 0. From the

top to the bottom, ttµ, ddµ and ppµ.

The energies, ε, of the muonic molecules corresponding to the wave functions

calculated above are given in Table 3.

Table 3: ε value for different muonic molecules. The first region denotes the infinity well for

which there is only one energy state, and the second region corresponds to the small well.

Also the 3D energy results are given

Molecule ε

2D first region 2D second region 3D

ppµ −0.9338 3.193 −4.596

ddµ −2.752 5.846 −9.377

ttµ −5.836 8.516 −14.2

Our 3D results can be compared to those found in Ref. [42]. We have to be

cautious in this comparison, since the molecular reduced mass was not properly

took into account in that paper. In addition, we should express our results for
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the energy values in Ry∗. Doing so, we reproduce those values within an error

of 1.9% for ppµ, 2.5% for ddµ and 3.3% for ttµ energies. If we do not take into

account the problem involving the reduced masses, the errors are even smaller.

All the 2D comparisons will be left to Section 5.

Still inside the first topic enumerated at the beginning of this Section, we can

finally calculate the fusion rate, supposing it is proportional to the probability

of finding the two nuclei very close together. Following Ref. [42], we chose to

calculate this probability for a internuclear separation between 0 and 10 fm

(' 0.04 a∗0). This reasonable choice is quite arbitrary but convenient in order to

facilitate the comparison of our results with those of Ref. [42].

In general, the probability of a particle inside a region limited by points a

and b in 3D is given by ∫ b

a

|ψ(ρ)|2ρ2dρ (20)

and, in 2D, is given by ∫ b

a

|ψ(ρ)|2ρdρ (21)

As already said, all probabilities were calculated from zero to 0.04 a∗0 for the

muonic molecules and from zero to 0.04 a0 for the electronic molecules. These

predictions are arranged in the Table 4.

Table 4: Theoretical predictions for the 3D and 2D probabilities of finding the molecules with

a small inter nuclear separation is of the order of 10 fm or less. Also the ratios between two-

and thee-dimensional predictions are given here

Molecule 2D Probability 3D Probability Ratio (2D/3D)

ppµ 9.3× 10−3 2.9× 10−9 3.2× 106

ddµ 1.6× 10−2 1.2× 10−10 1.3× 108

ttµ 7.1× 10−2 8.2× 10−12 1.8× 109

dde 4.56× 10−6 1.7× 10−88 2.7× 1082

In Ref. [42] the authors defined the fusion rate Λ as a quantity proportional

to the probability density (and not the probability), i.e.,

Λ ∝ |ψ(ρ)|2
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With this definition, they found that the relative fusion rate λ ≡ Λ2D/Λ3D, for

ρ = 0.04, is much smaller than what is found in the present paper. Indeed, they

found λ = 350 for ppµ, λ = 1 530 for ddµ and λ = 5 620 for ttµ, to be compared

with the respective values of the right column of Table 4. For ttµ molecule, our

prediction is 3 × 105 times bigger than the previous result. We will turn back

to this point in the concluding remarks.

The second subject we intend to investigate here is how the tunnelling coef-

ficient (T ) changes form going from a 3D to a 2D system.

From Eq. (8), the transmission coefficient for a particle tunnelling through

a potential barrier, in dimensionless unity, is [44]

exp

(
−2

∫ ρ2

ρ1

dρ
√
V (ρ)− ε

)
(22)

where V (ρ) = µ
m3

[− ln ρ+W±] +
(`2− 1

4 )

ρ2 , and ρ1 and ρ2 are the two classical

turning points for the potential barrier. Eq. (22) gives us a semi-classical esti-

mation for the tunnelling coefficients (T ) for the 2D and the 3D cases, as shown

in the Table 5.

Table 5: Tunnelling coefficients (T ) for the 2D and the 3D cases, calculating with Eq. 22 for

different molecules

Molecule T (2D) T (3D)

ppµ 1.56× 10−2 1.92× 10−5

ddµ 8.03× 10−4 1.73× 10−7

ttµ 9.28× 10−5 4.53× 10−9

A direct inspection of the results shown in Table 5 confirms what is well

known, i.e., the transmission coefficient is inversely proportional to the nuclei

reduced mass. Indeed, T (ppµ) > T (ddµ) > T (ttµ). However, the biggest

enhancement of the fusion rate in going from a 3D to a 2D system is found

for the ttµ ionized molecule. If we define, for each molecule M , a parameter

τM ≡ T 2D
M /T 3D

M as the relative factor expressing this enhancement, we get:

τppµ ' 0.8 × 103, τddµ ' 4.6 × 103 and τttµ ' 2.0 × 104. Thus, independent of
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the kind of molecule we are considering the probability of having a tunnelling

effect always increases by going from 3D to 2D.

So, we can safely conclude that the biggest improvement of the fusion rate

due to the tunnelling comes out from the ttµ molecule.

The tunnelling coefficient was not calculated in Ref. [42], where the author

limited themselves to argue that the tunnelling is favoured in 2D since in 2D

the size of any molecules is smaller than in 3D, as commented later.

The last topic we would like to consider here is the comparison between

the predictions for the mean molecular size in 3D e 2D. These sizes can be

calculated, respectively, by the following equations:

〈ρ〉 =

∫ ∞
0

|ψ(ρ)|2ρ3dρ (23)

and

〈ρ〉 =

∫ ∞
0

|ψ(ρ)|2ρ2dρ (24)

The numerical results for these expressions are given in Table 6.

Table 6: Mean molecular sizes in 2D and in 3D cases

Molecule 〈ρ〉2D 〈ρ〉3D

ppµ 4.11222 4.07055

ddµ 3.84134 3.42082

ttµ 3.68447 3.20174

Notice that, for the same molecule, the values are comparable, indicating

that for a given positive energy corresponding to the wave functions previously

calculated for the second well (Fig. 8), the mean molecular size is quite indepen-

dent on space dimensionality. Anyway, in both 2D and 3D the radius decreases

as the nuclei masses increase.

Here a significant difference between our predictions and those of Ref. [42]

was found. In fact, although we found that the mean size of the molecule practi-

cally do not depend on the space dimensionality, in Ref. [42] the authors claimed

that the equilibrium distance between the two nuclei (which is not exactly the
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same as the mean size), in 2D, is estimated to be 1/4 of the corresponding value

in 3D.

5. Concluding remarks

The overall conclusion of this paper is that the rates for µCF is strongly

enhanced in a 2D quasi-adiabatic model, if the two nuclei inside the ionized

muonic molecules are in a s-state (` = 0). From a practical point of view, we

have enlightened the question in what extent the fusion rate increases from pass-

ing from a 3D model to a 2D one. Indeed, Table 4 summarizes the enhancement

factor for each one of the molecules we have considered. The smaller value for

the relative ratio (2D/3D) is 3.2 × 106 for ppµ and the larger one is 1.8 × 109

for ttµ. In complement, the tunnelling factor, in the case of ppµ, increases by a

factor τ ' 790, while for ttµ we got τ ' 2× 104.

In summary, from the three types of ionized molecules we have studied, we

have found that the most favorable µCF corresponds to the molecule ttµ, from

which one expect a nuclear reaction of the type

ttµ→ 4He + 2n+ µ+ 10 MeV

As already said, we hope to treat ionized molecules with different nuclei, like

dtµ [26, 45, 46] (in this case, for each fusion 17 MeV of energy are released), in

a future publication.

Now, from the theoretical point of view, we can argue what is the most

crucial reason for these results. This question makes sense if we remember that,

in passing from a 3D model to a 2D model, two qualitatively different features

are changed: the first, which is essentially a geometric factor, is the centrifugal

potential `(` + 1)/r2 in 3D which is replaced by (`2 − 1/4)/r2 in 2D, and the

dynamical potential between charge particles changes from 1/r to ln(r).

Therefore, we can wonder whether our predictions and their comparison

with others can shed light on what actually made the 2D model for the µCF so

peculiar.

First of all, we stress the unique features of the effective potential energy

(Veff) when the angular momentum between the two molecular nuclei is zero

(` = 0). Only in this case Veff has two distinct wells: a very sharp one, going

to −∞, when ρ→ 0 and showing on the right side a maximum around ρ ' 0.5,

and a second well that goes from this maximum up to ρ ' 5. The existence
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of such a maximum facilitates the tunnelling effect when compared with the

other Veff curves for ` = 1, 2, 3, · · · (Fig. 9). Indeed, increasing the value of `,

the abscissa of the minimum of the remaining well goes to the right and the

ordinate increases, as shown in Fig. 9, for ` = 1. This means that the tunnelling

coefficient decreases whenever ` increases and one should have a bigger mean

value of ρ.

Figure 9: Sketch of two effective potentials related to W+ in 2D, for ` = 0 and ` = 1.

Secondly, the results summarized in Table 4 show that the probability of

finding the two nuclei in the region 0 . ρ . 0.04 (which, by hypothesis, is a

requirement for fusion startup) is much higher than the equivalent probability

in 3D.

Finally, let us make a comment comparing the effect of the e→ µ substitu-

tion inside the molecule versus the effect of dimensional reduction from 3D to

2D.

Looking at Table 4, one realizes, as expected, that the replacement of the

electron inside the ionized molecule by a muon gives rise to a higher probability

of fusion. But what to say about the effect of having reduced the dimension of

the system?

Our numerical program can be easily adapted for molecules with electrons.

In particular, we have calculated the probability of fusion for dde in 2D and 3D.

The results are exhibit in Table 4. We can see that, for dde, the 2D probability

is 3.7 × 104 times bigger than the probability of fusion for the molecule ddµ

in 3D. We also have a 2D probability fusion for ddµ 1.3 × 108 times bigger
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than the 3D probability for the same molecule. These results suggest that if

one keep the electron inside the molecule and only reduces space dimensionality

from 3 to 2 the probability of fusion is still significantly increased (by a factor

104 in this case) with respect to the situation where the space dimensionality

is maintained and the electron is replaced by a muon. However, substituting

e→ µ and, at the same time, reducing the space dimensionality gives us a gain

of (104)2. Unfortunately, Ref. [42] do not give us a prediction for the fusion

probability in the case of dde molecule in 2D computed with the 1/r Ansatz,

instead of ln(r).

We hope that this work could contribute to a better understanding of how a

muon-catalyzed fusion actually works in two dimensions, and that the complete

planar multi-interaction fusion process could be investigated in a near future,

especially for ttµ and dtµ.
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6. Appendix

The complete result for the overlap integral ∆ can be expressed in terms of

incomplete gamma functions, Γ(s, ρ), and of the modified Bessel function of the

second kind, K3(ρ), as follows:

∆ =
ρ3

2π

{
π

4
K3(ρ) +

π

64

[
9ρΓ(−1, ρ) +

23

4
ρ3 Γ(−3, ρ)+ (25)

+
32

8
ρ5 Γ(−5, ρ) +

105

32
ρ7 Γ(−7, ρ) +

25

68
ρ9 Γ(−9, ρ)

]}
To solve Eq. (6), first let’s write it in prolate coordinate system

E =
ρ3

4π

{
2 ln

(ρ
2

)∫ 1

−1

dη√
1− η2

∫ ∞
1

dξ
(ξ2 − η2)

3
2 e−ρξ√

ξ2 − 1
+

+

∫ 1

−1

dη√
1− η2

[∫ ∞
1

dξ
ln(ξ + η)(ξ2 − η2)

3
2 e−ρξ√

ξ2 − 1
+

+

∫ ∞
1

dξ
ln(ξ − η)(ξ2 − η2)

3
2 e−ρξ√

ξ2 − 1

]}
The trick here to find the analytical solution of the second and the third

integrals of the last expression for E is to expand each one in a Taylor series

in the variable ξ around η = 0 up to the sixth order using Maple 17 software,

according to which∫ ∞
1

ln(ξ ± η)(ξ2 − η2)
3
2 e−ρξ√

ξ2 − 1
dξ '

∫ ∞
1

ln(ξ)e−ρξξ3√
ξ2 − 1

dξ +

∓ g1η + g2η
2 ∓ g3η

3 + g4η
4 ± g5η

5 +O(η6)

with

g1 =
1

ρ
G2,1

1,3

ρ2

4

∣∣∣ 0

1
2 ,−

1
2 , 1


g2 = −1

2

∫ ∞
1

[
3 ln(ξ)e−ρξξ√

ξ2 − 1
+

e−ρξξ√
ξ2 − 1

]
dξ

g3 =
7

6
K0(ρ)

g4 =
1

2

∫ ∞
1

[
3 ln(ξ)e−ρξ

4ξ
√
ξ2 − 1

+
e−ρξ

ξ
√
ξ2 − 1

]
dξ

g5 =
3ρ3

640
G3,0

1,3

ρ2

4

∣∣∣ 0

− 1
2 ,−1,− 3

2


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Whenever necessary, the same Laurent series approximation, Eq. (17), was used,

as for the ∆ calculation. Here K0(ρ) is a modified Bessel function of the second

kind and Gm,np,q

(
z
∣∣∣ a1,··· ,anb1,··· ,bn

)
denotes the general function called Meijer-G [43].

After a straightforward and long calculation the result can be simplified in

such a way that the factor E depends only on a particular incomplete gamma

function and on different Meijer-G functions, i.e.,

E(ρ) =
ρ3

2048

768
Γ(0, ρ)

ρ
+ 144G3,0

2,3

ρ
∣∣∣∣∣∣ 2, 2

0, 1, 1

+

+ 104G3,0
2,3

ρ
∣∣∣∣∣∣ 4, 4

0, 3, 3

+ 186G3,0
2,3

ρ
∣∣∣∣∣∣ 6, 6

0, 5, 5

 +

+ 45G3,0
2,3

ρ
∣∣∣∣∣∣ 8, 8

0, 7, 7

 (26)

The last integral to be solved is that of Eq. (5), which, in the prolate coor-

dinate system, is:

D = ln
ρ

2
+
ρ3

2π

∫ 1

−1

eρηdη√
1− η2

∫ ∞
1

ln(ξ + η)e−ρξ
(ξ − η)(ξ2 − η2)√

ξ2 − 1
dξ (27)

In this case, the slow convergence in the variable ξ, leads us to take terms

up to the seventeenth order of ξ in the Taylor series expansion of the second

integral. This choice assures that the analytical result and the numerical one

differ from each other just by a factor of the order of 2%. Due to the large

number of terms in this expansion we chose not to show them explicitly. As

in the previous case, we started using the Maple 17 software for the expansion

of the integral in the variable ξ. Use has also been made of Laurent series

expansion whenever necessary. In this case, we were able to obtain an analytical

expression for Eq. (27), that depends on the modified Bessel functions of the

first and second kind, In(ρ) and Kn(ρ), on one incomplete gamma function and

on several Meijer-G functions, namely:
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D(ρ) = g0 + g1
Γ(0, ρ)

ρ
+ g2G

3,0
2,3

ρ
∣∣∣∣∣∣ −1,−1

−2,−2, 0

+

+ g3G
3,0
2,3

ρ
∣∣∣∣∣∣ −2,−2

−3,−3, 0

+

+

7∑
n=1

gn+3G
3,0
2,3

ρ
∣∣∣∣∣∣ n, n

0, n− 1, n− 1

+

+

17∑
n=0

(−1)nhnG
3,0
1,3

ρ2

4

∣∣∣∣∣∣ 0

− 1
2 ,−

(1+n)
2 ,− (2+n)

2

 (28)

The explicit form of the gn e hn factors are:

g0 = ln
(ρ

2

)
+
ρ3

2

[
[K0(ρ) +K1(ρ)]I1(ρ)− 1

6
K0(ρ)I3(ρ)+

− 3

2
K1(ρ)I2(ρ)

]
− 3

4
[K1(ρ)I1(ρ) +

1

3
K0(ρ)I2(ρ)]

g1 = −ρ
3

4
I2(ρ)

g2 = −ρ
3

2
I1(ρ)

g3 =
ρ3

2
I0(ρ)

g4 =
ρ2

4
[ρI1(ρ)− 2I2(ρ)]

g5 = −ρ
2

16
[ρI0(ρ)− 4I1(ρ)]

g6 =
ρ3

16
I3(ρ)

g7 = − ρ

32
[ρI0(ρ)− 6I1(ρ)]

g8 =
ρ2

32
[ρI1(ρ)− 6I2(ρ)]

g9 = −5ρ2[I1(ρ) + ρI2(ρ)]

g10 =
5ρ2

32
[3I2(ρ) + ρI3(ρ)]

h0 =
11

192
ρ3
(
ρ2 + 3

)
I2(ρ)

h1 =
23

960

ρ4

2

[(
ρ2 + 15

)
I3(ρ) + 2ρI4(ρ)

]
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h2 =
13

1920

ρ4

2

[
5
(
ρ2 + 3

)
I3(ρ) +

(
ρ2 + 5

)
ρI4(ρ)

]
h3 =

59

26880

ρ5

2

[
3
(
3ρ2 + 35

)
I4(ρ) +

(
ρ2 + 15

)
ρI5(ρ)

]
h4 =

83

107520

ρ5

2

[
4ρ3I5(ρ) +

(
ρ4 + 42ρ2 + 105

)
I4(ρ)

]
h5 =

37

129024

ρ6

2

[
4
(
2ρ2 + 21

)
ρI6(ρ) +

[
ρ4 + 98ρ2 + 945

]
I5(ρ)

]
h6 =

143

1290240

ρ6

2

[(
13ρ4 + 378ρ2 + 945

)
I5(ρ)+

+
(
ρ4 + 42ρ2 + 189

)
ρI6(ρ)

]
h7 =

179

4055040

ρ7

2

[(
19ρ4 + 1170ρ2 + 10395

)
I6(ρ)+

+ ρ
(
ρ4 + 94ρ2 + 945

)
I7(ρ)

]
h8 =

73

4055040

ρ7

2

[
12
(
ρ2 + 27

)
ρ3I7(ρ)+

+
(
ρ6 + 189ρ4 + 4455ρ2 + 10395

)
I6(ρ)

]
h9 =

263

35143680

ρ8

2

[
18ρ

(
ρ4 + 60ρ2 + 495

)
I8(ρ)+

+
(
ρ6 + 345ρ4 + 16335ρ2 + 135135

)
I7(ρ)

]
h10 =

311

98402304

ρ8

2

[
5
(
5ρ6 + 561ρ4 + 11583ρ2 + 27027

)
I7(ρ)+

+ ρ
(
ρ6 + 183ρ4 + 4455ρ2 + 19305

)
I8(ρ)

]
h11 =

121

89456640

ρ9

2

[
33
(
ρ6 + 191ρ4 + 7735ρ2 + 61425

)
I8(ρ)+

+ ρ
(
ρ6 + 333ρ4 + 15675ρ2 + 135135

)
I9(ρ)

]
h12 =

419

715653120

ρ9

2

[
24
(
ρ4 + 110ρ2 + 2145

)
ρ3I9(ρ)+

+
(
ρ8 + 564ρ6 + 47190ρ4 + 900900ρ2 + 2027025

)
I8(ρ)

]
h13 =

479

1871708160

ρ10

2
×

×
[(
ρ8 + 900ρ6 + 123942ρ4 + 4504500ρ2 + 34459425

)
I9(ρ)+

+ 8ρ
(
4ρ6 + 753ρ4 + 30030ρ2 + 225225

)
I10(ρ)

]
h14 =

181

1604321280

ρ10

2
×

×
[(

41ρ8 + 12324ρ6 + 859950ρ4 + 15315300ρ2 + 34459425
)
×

× I9(ρ) + ρ
(
ρ8 + 548ρ6 + 45630ρ4 + 900900ρ2 + 3828825

)
I10(ρ)

]
h15 =

611

12192841728

ρ11

2
×

×
[
3
(
17ρ8 + 7756ρ6 + 870870ρ4 + 29238300ρ2 + 218243025

)
I10(ρ)+

+ ρ
(
ρ8 + 876ρ6 + 119574ρ4 + 4340700ρ2 + 34459425

)
I11(ρ)

]
h16 =
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30482104320

ρ11

2
×

×
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)
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(
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]
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