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Abstract - Single uncharged pion production in neutron- and proton-induced reactions on com-

plex nuclei, combined with the nuclear Fermi Gas Model, has been used to evaluate the average

equivalent radius of a (Z,A) nucleus directly from the experimental nuclear mass-values of (Z,A)

and its neighbors (Z,A−1) and (Z−1, A−1) isobars. A simple formula without adjustable param-

eters has been derived which gives nuclear radius-values that are in good agreement with updated,

equivalent rms radius-values derived from experiments for a set of 540 nuclides comprising spher-

ical, quasi-spherical, stable and long-term half-life nuclides. We shall call by RFNM-approach the

present method of nuclear radius determination.
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1 Introduction

The present paper reports on the development and applications of an alternative method of es-

timating of the average radius-value, QA, of any nucleus (Z,A) of atomic number Z and mass

number A. The approach to radius determination described below has been developed according

to two basic ideas. The first one is to consider single uncharged pion production nuclear reactions

induced by protons and neutrons, for which reactions it has been supposed that the threshold

kinetic energy of the incident particle should be the same as in the head-on primary collisions

np→ dπ0 and pn→ dπ0 that take place at the boundaries of the nuclear surface.

In second place, it has been considered the target Z protons and A−Z neutrons moving like

in separated Fermi gases of protons and neutrons, where their respective average kinetic energies

are those occurring in the head-on collisions mentioned above.

These two hypotheses lead to a simple, direct dependence between the nuclear radius of (Z,A),

QA, and the nuclear masses of its neighbor (Z,A− 1) and (Z − 1, A− 1) isobars. Since the Fermi

gases of protons and neutrons are independent of each other, there will be a value for the radius of

the spherical volume that contains the Z protons, Rp, and another one where the A−Z neutrons

are contained, Rn.

The weighted average QA = (Z/A) · Rp + (1 − Z/A) · Rn will represent the final value for

the estimated radius of the (Z,A) nucleus. The radial extent of the atomic nucleus, in this

way, is dictated by the extreme point at the nuclear surface where the thresholds of the primary

reactions np → dπ0 and pn → dπ0 are just the same as for the respective nuclear reactions of

dπ0 production from the complex (Z,A) nucleus. It should be pointed out that these single π0

production reactions exhibit the lowest threshold energy-value (275 MeV) among all the fourteen

primary single pion production reactions, and, in addition, uncharged pions have a mean lifetime

of the order of 10−16 s.

The authors anticipate that the calculated average nuclear radius-values, QA, following the ap-

proach outlined above compare well with hundreds of experimental, equivalent root-mean-squares

charge radii extracted from the updated compilation of radius-data reported by Angeli and Mari-

nova [1].



CBPF-NF-003/19 3

2 A simple model to evaluate nuclear size

Let us consider the target nucleus (Z,A) of mass MT at rest, and the two possible reactions of π0

production induced by a neutron or proton leading to production of a deuteron and the residual

nucleus (Z ′, A′) of rest mass MR. These reactions occur through the primary interactions

p + n→ d + π0 and n + p→ d + π0 , (1)

i.e.,

p + (Z,A)→ (Z,A− 1) + d + π0 , (2)

when the target nucleon is a neutron, and

n + (Z,A)→ (Z − 1, A− 1) + d + π0 , (3)

when the target nucleon is a proton. By expressing masses in u (atomic mass unit), the threshold

kinetic energy of the projectile (proton or neutron), T th
P , for reactions (2) and (3) are obtained by

T th
P =

F

2MT

[
(md +mπ0 +MR)2 − (mP +MT)2

]
MeV, (4)

where F = 931.4940038 MeV/u is the mass-energy conversion constant, md = 2.013553213 u is

the deuteron rest mass, mπ0 = 0.14490334 u is the π0 rest mass, and mP denotes the projectile

rest mass (mn = 1.0086649158 u for neutron, and mp = 1.00727646693 u for proton).

Nuclear mass-values for the target (MT) and residual (MR) nuclei to be used in (4) have been

obtained by the usual way, viz.,

M = A− Zme +
∆M + kZβ

F
, (5)

in which me = 0.548579909×10−3 u is the electron rest mass, and ∆M is the atomic mass-excess,

the values of which (expressed in MeV) have been taken from the AME2016 [2]. The quantity

kZβ represents the total binding energy of the Z electrons in the atom, where the constants k and

β take the values

k = 13.6× 10−6 MeV and β = 2.408 for Z < 60 ,

and k = 8.7× 10−6 MeV and β = 2.517 for Z ≥ 60 ,
(6)

as they come from data reported by Huang et al. [3].

The mechanism for pion production in reactions (2) and (3) consists of the primary interac-

tions (1), where the target nucleon is moving at random inside the target nucleus. The projectile

threshold kinetic energy, T th
P , is then obtained from the head-on collisions that take place at the
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nuclear boundary between the incident projectile and the target nucleon moving with average

kinetic energy Tt. This quantity will be derived subsequently by using the early Fermi Gas Model

of the atomic nucleus. In such collisions the total energy in the CM system, E, must be equal to

the sum of the rest masses of the primary reaction products, i.e.,

m2
Pc

4 +m2
tc

4 + 2EPEt (1− βPβt cos θ) = (md +mπ0)2c4 . (7)

Here, subscript t identifies the quantities associated to the target nucleon, and θ = 180◦. In

addition,

EP = T th
P +mPc

2 , Et = Tt +mtc
2 ,

βP =

[
1−

(
T th
P

mPc
2 + 1

)−2]1/2
, βt =

[
1−

(
Tt
mtc

2 + 1
)−2]1/2

.

(8)

By solving (7) for Tt it gives

Tt = Fmtxt , xt = C (1 + qt)−
{

1 +
[(
C2 − 1

)
qt(qt + 2)

] 1
2

}
, (9)

where

qt =
(md+mπ0+MR)

2
−(mP+MT)

2

2mPMT
, t = n, p

and C =
(md+mπ0 )2−(m2

P
+m2

t)
2mPmt

= 1.292771873 .

(10)

Both qt and C are dimensionless quantities, the former one being dependent on mass-values of the

target and residual nuclei in the π0 production reactions (2) and (3), and C is constant. Recall

that P = p when t = n, and P = n when t = p.

The average kinetic energy of the target nucleon, Tt, has been derived from the nuclear Fermi

Gas Model. Accordingly, the distribution of the kinetic energy states of the target nucleons, Tt,

in a Fermi gas of Z protons or A − Z neutrons of a target nucleus (Z,A) in its ground state is

given by

dn

dTt
= K · T 1/2

t , K =
16
√

2π2

3
· m

3/2
t

h3
·R3

i , i = p, n (11)

in which Ri represents the radius of the spherical volume which contains the Fermi gas of protons

or neutrons, and h = 6.626069574 × 10−27 erg·s is Planck’s constant. The average equivalent

nuclear radius is then evaluated as

QA =
Z

A
·Rp +

(
1− Z

A

)
·Rn . (12)

To evaluate Tt, let N be the number of protons (Z) or neutrons (A − Z) contained in the

spherical volumes of radii Rp and Rn, respectively. Since these particles are fermions, the energy
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levels are filled with no more than two protons or two neutrons up to the Fermi energy, TF
t , the

highest energy level allowed for nucleons. So, the total number of energy levels, nT, should be

nT = N /2 for even N , and nT = (N + 1)/2 for odd N . Now, the energy interval 0 –TF
t is divided

into nT− 1 equal intervals of width ∆Tt in such a way that TF
t = (nT− 1) ·∆Tt. The distribution

(11) isn’t strictly a continuous function for, even for heavy nuclei (Z ≈ 80 –100, A−Z ≈ 120 –160)

the number of particles is relatively small, so that the integrals which appear to calculate the

total number of energy levels, nT, and the average energy level, Tt, should be replaced by sums.

Therefore, one has

nT = K · (∆Tt)3/2 · S(nT), S(nT) = 1 + 21/2 + 31/2 + . . .+ (nT − 1)1/2, (13)

and

Tt =
∆Tt · S ′(nT)

S(nT)
, S ′(nT) = 1 + 23/2 + 33/2 + . . .+ (nT − 1)3/2. (14)

By combining (13) and (14), it results

Tt =
G(nT)

K2/3
, G(nT) =

n
2/3
T · S ′(nT)

[S(nT)]5/3
. (15)

G(nT) is a smooth, increasing, concave downward function (for nuclei of A ≥ 40, G(nT) scales as

n
2/3
T ).

Introducing Tt and K as they are given by (9) and (11), respectively, into (15), and expressing

radii in fm, one obtains, finally,

Rp = 0.314123

(
Gp(nT)

xp

)1/2

and Rn = 0.313691

(
Gn(nT)

xn

)1/2

. (16)

(Gp(nT) and Gn(nT) refer, respectively, to the Fermi gas of Z protons and A−Z neutrons). Since

nT depends only upon Z protons or A−Z neutrons, and the quantity xp,n upon the nuclear masses

of (Z,A), (Z,A − 1) and (Z − 1, A − 1) nuclei through (9) and (10), it follows that the radius

of the (Z,A) nucleus as calculated from (12) results directly from its nuclear mass-value and the

ones of their neighbor (Z,A− 1) and (Z − 1, A− 1) isobars.

3 Results and discussion

Fig. 1 shows in part a) the calculated trends of the proton and neutron radii (Rp and Rn, respec-

tively), and the average, equivalent nuclear radius (QA, eq. (12)) following the present RFNM-

approach as a function of mass number, A, for a number of nuclei along and near the line of beta



CBPF-NF-003/19 6

stability. In fig. 1-b it is depicted the reduced radius, QA/A
1/3, for the same nuclei. For compari-

son, the equivalent root-mean-squares radius, Qe =
√

5/3<r2>1/2 and its reduced form, Qe/A
1/3,

as deduced from the experimental rms radius-data reported by Angeli and Marinova [1] are also

reported in parts a) and b), respectively. It is seen a very good similarity between the trends

from the presently calculated radius-values and those coming from the experiments. The trends

in fig. 1-b reveal a strong decrease of the reduced radius when one passes from less-massive nuclei

(A ≈ 16 –20) to heavy ones (A ≥ 200) (a reduction by ∼ 10 –13%, thus reflecting a clear degree

of nuclear compressibility, therefore, making the simple parametrization QA or Qe proportional to

A1/3 not applicable equally to all nuclei.

It turns out that almost 60% of all stable plus long-lived nuclides selected to construct fig. 1

exhibit a significant degree of quadrupole deformation, |δ|, like greater than ∼ 10%. Since the

present method of radius determination has been developed under the assumption of spherical

approximation for the atomic nucleus, it would be more appropriate to compare the presently

calculated radii (eq. (12)) with the experimental, equivalent rms radii for all spherical and quasi-

spherical nuclei, i.e., those nuclei for which |δ| < 10% that are listed in table 1 of Ref. [1].

The shape of the axially symmetric, ground state deformed nucleus is given by the quadrupole

deformation parameter, β2, which is (to second order in β2) connected to the intrinsic electric

quadrupole moment, Q2, as [4]

Q2 ≈
3

500
ZR2

ch

√
5

π
β2

[
1 +

2

7

√
5

π
β2

]
barn , (17)

so that the quantity δ can be defined as

δ =
100Q2

ZR2
ch

≈ 0.7569β2 + 0.2728β2
2 . (18)

Therefore, it results that |δ| < 10% when β2-values are found in the interval −0.139 < β2 < 0.127.

By searching for the most recent β2-values resulting from the Finite-Range-Droplet-Model (2012)

of atomic nuclei as tabulated by Möller et al. [5], it has been possible to identify three-hundred

and eighty-three spherical plus quasi-spherical nuclei of |δ| < 10% in the compilation of the

experimental data of Ref. [1]. In fig. 2 the differences ∆Q = QA − Qe, between the presently

calculated average radii (eq. (12)) and the experimental ones Qe =
√

5/3<r2>1/2 [1], have been

plotted against mass number for all these spherical and quasi-spherical nuclei. Such ∆Q-values

show to be distributed as a normal Gaussian curve around the mean value < ∆Q >= −0.00567

and standard deviation σ = 0.08779, with χ2
ν = 1.2. In about 70% of cases the values of QA and

Qe differ from each other by less than 1.5%.
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The correlation between nuclear radii and nuclear masses is exemplified to some detail in

figs. 3 and 4. Fig. 3 shows the case for the sequence of 202–214Pb isotopes. Excess-mass values

(fig. 3-a) and total electron binding energies (eqs. (5)–(6)) are used to obtain the quantities qn and

qp (eq. (10)), and then they are inserted into eq. (9) to give the values of xn and xp (fig. 3-b). x(q)

is a smooth, concave upward function which decreases from C−1 at q = 0 down to 0 at q = C−1

(C is the constant given in (10)). The quantities xn and xp carry both the pairing and shell effects

exhibited by nuclear masses, especially when neutrons are target nucleons. The resulting radii of

the volumes of the Fermi gases of protons (Rp) and neutrons (Rn) reflect the structures showed

by xn and xp (fig. 3-c), and the final value for the nuclear radius, QA, is obtained by weighted

averaging Rp and Rn following eq. (12). Results so obtained compare well with the equivalent

radius-values derived from experiments (differences in this sequence of lead isotopes have resulted

to less than ∼ 1.3%).

Another example can be seen in fig. 4, where the various quantities that enter into radius

determinations of 82–92Sr isotopes have been plotted as a function of neutron number. Similarly

to fig. 3, pairing and shell structures are seen for mass-excess, and xn and xp, as well as similar

trends for the nuclear radii Rp, Rn and QA. Note that in both examples the maximum difference

QA − Qe has resulted just at neutron-shell closures. This is partially due to the fact that the

experimental Qe-values in Ref. [1] come from the rms nuclear charge radii, being not considered

the radii of the neutron distribution in nuclei. This issue will be treated in a future study on

nuclear radius.

4 Conclusion

To conclude, we can say that the present RFNM-procedure for nuclear radii evaluation provides

satisfactory results indeed, very close to the equivalent rms radius-values of the charge distribution

for a great number of nuclei. The primary reactions of head-on collisions np→ dπ0 and pn→ dπ0

occurring at the boundaries of the atomic nuclei were able to provide good estimates for the average

size (in the spherical approximation) for hundreds of nuclei. We believe that comparisons of the

calculated radii by the present RFNM-approach with systematics of equivalent radii following the

droplet model of atomic nuclei [6] with updated parameter-values [5], and the proton and neutron

radii using the SLy4 parametrization of the Skirme-like force [7] will give much better agreement

between each other data.
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Figure Captions

Fig. 1 Trends of the radial extent of atomic nuclei plotted against mass number, A, for the two-

hundred and forty-seven stable plus thirty long-term half-life nuclides of Z and N ≥ 8. In

part a) the gray long-dashed lines labeled Rn and Rp correspond to calculated neutron and

proton radii, respectively, following the present RFNM-approach (eq. (16)), and the gray full

line is the trend of the average nuclear radius, QA, as obtained by eq. (12); points represent

the experimental, equivalent rms charge radius, Qe =
√

5/3<r2>1/2, of data taken from [1];

the inset shows the frequency distribution of the difference ∆Q = QA − Qe. Part b) shows

the trend of the reduced radii QA/A
1/3 and Qe/A

1/3, for the same nuclei. For the sake of

clarity, only a few experimental data points have been plotted.

Fig. 2 The difference ∆Q = QA−Qe between calculated and experimental radii is plotted versus

mass number, A, for three-hundred and eighty-three spherical and quasi-spherical nuclei

of degree of deformation |δ| < 10% (see text for details). QA-values are those obtained

according to the present RFNM-approach (eq. (12)), and Qe-values are the experimental,

equivalent rms charge radius-values given by Qe =
√

5/3<r2>1/2, where <r2>1/2 charge

radii are those tabulated in [1]. The regions of nuclei of neutron and proton shell-closures

are indicated by arrows, and the distribution of the ∆Q-values is attached at right.

Fig. 3 Illustrating the direct correlation between the radius of a nucleus (Z,A) and the nuclear

masses of (Z,A) and its neighbor (Z,A− 1) and (Z − 1, A− 1) isobars. It is shown the case

for 202–214Pb isotopes. In the inset scheme of part a), from right to left, a colliding proton

with a target neutron of (Z,A) produces the residual (Z,A−1), and from top to bottom, the

collision of a neutron with a target proton of (Z,A) leads to residual (Z− 1, A− 1); the pair

d+ π0 is formed in both reactions. Mass-excess of the lead and thallium isotopes that enter

into the determination of the radius of (Z,A) nucleus are plotted versus neutron number,

N ; note the change in slope at N = 126 shell closure. In part b), the quantity x defined

by eq. (9) is plotted as full circles for the proton Fermi gas (xp), and open circles for the

neutron Fermi gas (xn); pairing effect is clearly seen in both cases; for target neutrons the

strong “saw-tooth” structure jumps by ∼ 5.6% from N = 126 on. In part (c), the resulting

radius-values Rn (open circles) and Rp (full circles) reflect the respective trends of xn and

xp; the final average nuclear radius, QA (open triangles, eq. (12)), compare well with the

experimental, equivalent rms charge radius, Qe (full squares [1]).

Fig. 4 The same as in fig. 3, but for 82–92Sr isotopes. In this case, the minimum of ∆M occurs

at N = 50 shell closure. Like in fig. 3, the “saw-tooth” structure in xn jumps from N = 50
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on. Only in two cases the final calculated QA-values differ from the experimental ones by

more than 1.5%.
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