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Abstract

We generalize the conformally invariant topological quantum mechanics of a

particle propagating on a punctured plane by introducing a potential that breaks

both the rotational and the conformal invariance down to a Z2 angular-dependent

discrete symmetry. We derive a topological quantum mechanics whose localiza-

tion gauge functions give interesting self-dual equations. The model contains an

order parameter and exhibits a spontaneous symmetry breaking with two ground

states above a critical scale. Unlike the ordinary O(2)-invariant Higgs potential, an

angular-dependence is found and saddle points, instead of local maxima, appear,

posing subtle questions about the existence of instantons. The supersymmetric

quantum mechanical model is constructed in both the path integral and the oper-

atorial frameworks.
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1 Introduction

In [1] a solvable model for a superconformal quantum mechanical system was introduced,

giving an example of a quantum topological theory with no ground state and no mass gap.

In [2] this model was extended to the case of a possibly infinite chain. This toy model

was motivated by the search of an abstract definition of mechanical systems possessing

epicycle descriptions, in an attempt to encode the robotic movements of rods presented

in [3].

More refined models are expected to have a breaking of conformal symmetry. It is

tempting to look for new classes of potentials that break other types of symmetries as

well, like the rotational invariance, while keeping some of the properties of the topological

models [1, 2]. Here we generalize the topological invariant
∫
γ dθ that defines the topo-

logical quantum mechanics of [1] into another invariant, which has a further dependence

on a point A distinct from the singular origin O of the punctured plane; this allows us

to introduce a length a = |−→OA| and a dimensionless order parameter. The model is de-

fined by a potential which breaks both the conformal and the rotational symmetry, but

keeps a discrete Z2 symmetry. This discrete symmetry is reminiscent of the T -duality

transformation in string theory, see [4]. It carries, however, an extra angular dependence.

The introduction of the length scale allows for the existence of a discrete spectrum

and a normalizable ground state. A spontaneous symmetry breaking is found. Indeed,

above a critical value for the order parameter, two ground states are found. Two main

properties single out this potential with respect to the standard Higgs potential. The first

one is the presence of an angular-dependence; the second one is the fact that, above the

critical scale, the potential does not possess any local maximum, but only (two) saddle

points. The possibility, following [5], of the existence of instantons is investigated.
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2 A reminder of conformal topological mechanics

The conformally invariant topological quantum mechanics of [1] is defined by the topolog-

ical gauge-fixing following the BRSTQFT, i.e. localization, scheme of [6] for the topolog-

ical invariant
∫
γ dθ on a punctured plane with real coordinates qi (i = 1, 2, x ≡ q1, y ≡ q2)

or complex coordinates q1 + iq2 =
√
|~q|2 exp iθ.

By introducing a coupling constant g, the topological classical action [1] reads

2πNg = g
∫
γ
dθ = g

∫
γ
dt θ̇ = g

∫
γ
dtεij

qiq̇j

2|~q|2
, (2.1)

where t is a Euclidean time and the dot means the time derivative d
dt

.

This action must be gauge-fixed in a topological BRST invariant way. Using the

complex coordinate notation z(t) ≡ q1(t) + iq2(t) (z = z∗), the topological gauge-fixing

equation was obtained in [1] as:

ż − ig

z
= 0. (2.2)

The BRSTQFT gauge invariant procedure provides a conformally invariant supersym-

metric action which, once untwisted, gives a N = 2 supersymmetry.

The solutions of (2.2) are periodic instantons zN(t), where N is an integer. We have

zN =
1√

2πNg
exp(2πiNt). (2.3)

They minimize (to the zero value) the non-negative bosonic action∫
γ
dt( ˙|~q|2 +

g2

~q2
+ gθ̇). (2.4)

The instantons are pseudo-particles that make N cycles per unit time at constant angular

velocity around the singular origin on circles with radius |zN | = 1√
2πNg

. The area ΣN of

the surface that the instanton zN circles around is independent on the value of N :

ΣN = Nπ(
1√

2πNg
)2 =

g

2
. (2.5)

The instanton structure follows from the identity

|̇~q|2 +
g2

|~q|2
=

1

2
(q̇i − gεij

qj√
2|~q|2

)2 +
1

2
(q̇i + gεij

qj√
2|~q|2

)2, (2.6)
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where the vector indices i, j are raised/lowered by the Euclidean metric δij.

The equation of motion, derived from the supersymmetric action, of the fermionic

partner Ψ = Ψ1 + iΨ2 of z, corresponds to the supersymmetric variation Q of Eq. (2.2).

We have

Q(ż − ig

z
) = igΨ̇∗ +

g

|~q|2
UθΨ = 0. (2.7)

Here Uθ = RθCR−θ, where Rθ represents an SO(2) rotation (detRθ = 1) with angle θ

and C is a conjugation matrix with detC = −1; therefore detUθ = −1.

The representations of the matrices acting on vectors are

C =

(
0 1

1 0

)
, Rθ =

(
cos θ − sin θ

sin θ cos θ

)
,

Uθ = |~q|2 δ2θ

δqiδqj
= |~q|2

δ2 log
√
|~q|2

δqiδqj
= RθCR−θ =

(− sin 2θ cos 2θ

cos 2θ sin 2θ

)
. (2.8)

In complex notation one has Uθz = iexp(−2iθ)z∗.

The action of the rotationR±θ on the instanton zN is a multiplication by exp(±2πiNt).

Therefore, the solution of the fermion equation (2.7) in the zN background is

Ψ(t) = Ψ0 exp(±i2πNt), (2.9)

where Ψ0 is time independent and

Ψ∗0 ± CΨ0 = 0. (2.10)

It follows that Ψ0 is just an eigenvector of the operator C which runs attached to the

instanton. One has

Ψ0 =

(
1

±1

)
. (2.11)

The fermionic zero modes can be thought as tangent vectors cycling at constant frequen-

cies 2πNg around the circles of radius
√

2πNg. Their existence implies a non-trivial

cohomology for the BRST symmetry of the theory. The paper [1] discusses in detail

the model and the way it allows to compute some (simple) topological invariants of the

punctured plane.
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3 A new model and its topological gauge-fixing

Let us introduce a point A 6= O on the punctured plane with singular origin O. We

define the orthonormal coordinates (x = q1, y = q2) such that
−→
OA = (a, 0). We also use

the complex and polar coordinates z = q1 + iq2 = r exp(iθ) when needed.

Given any contour γ in the punctured plane, we add to the closed and not-exact form

gdθ an exact-term that depends on the distance of the particle to the point A. The

simplest possibility is offered by gdθ + ω
2
d(|~q − −→OA|2). We therefore define the classical

topological action Iclγ (g, ω) of the new model as

Iclγ (g, ω) =
∫
γ

(
gdθ +

ω

2
d(|~q −−→OA|2)

)
. (3.1)

The action Iclγ (g, ω) is independent of any infinitesimal shift of coordinates

δr = εr(t), δθ = εθ(t), (3.2)

with appropriate boundary conditions.

Following the general BRSTQFT scheme of [6], we are interested in computing

observables that satisfy the Ward identities corresponding to the above gauge symme-

try (3.2). We will come back on this later, by showing the possibility of fermionic

zero modes. Comparing the actions (2.1) and (3.1) one understands that the topological

gauge-fixing (2.2) must be improved into

ż =
ig

z
+ ω(z − a). (3.3)

The above equation reads, in polar coordinates, as

ṙ = ω(r − a cos θ), rθ̇ =
g

r
+ ωa sin θ (3.4)

and, in Cartesian coordinates, as

ẋ =
gy

x2 + y2
+ ω(x− a), ẏ = − gx

x2 + y2
+ ωy. (3.5)

The parametrization expressed by a, ω, g can be simplified through redefinitions, as we

will shortly see. On the other hand, to have the possibility of discussing several interesting

limits, it is better to keep track of the explicit dependence on these parameters.
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The supersymmetric Q-exact action that localizes the topological gauge fixing (3.3)

is easier to compute in Cartesian coordinates. It transforms the topological term into

a supersymmetric action. It gives, on the same time, a consistent (that is, BRSTQFT-

invariant) information about the g, ω, a dependence of the theory. We get

Iclγ (g, ω) =
∫
γ

(
gdθ +

ω

2
d(|~q −−→OA|2) 7→

7→ Isusyγ (g, ω) =
∫
γ

(
gdθ +

ω

2
d(|~q −−→OA|2) +Q

(
Ψx(ẋ−

gy

x2 + y2
− ω(x− a) +

1

2
Hx) +

+Ψy(ẏ +
gx

x2 + y2
− ωy +

1

2
Hy)

))
. (3.6)

The time-dependent fields Ψx(t),Ψy(t),Ψx(t),Ψy(t) are fermion (that is, Grassmann co-

ordinates), while the time-dependent fields Hx(t), Hy(t) are auxiliary bosonic fields sat-

isfying algebraic equations of motion. The nilpotent operator Q (Q2 = 0, which also

satisfies [Q, d/dt] = 0) acts as follows on the fields

Qx = −Ψx, Qy = −Ψy,

QΨx = Hx, QΨy = Hy (3.7)

(and vanishing otherwise).

The computation of the Q-transformation of the topological gauge function provides

a Dirac-type operator acting on fermions which, in Cartesian coordinates, reads as

Dij = δij(
d

dt
− ω)− g εik

|~q|2
(δjk − 2

qjqk

|~q|2
). (3.8)

Therefore

Dij = δij(
d

dt
− ω) +

g

|~q|2

(− sin 2θ cos 2θ

cos 2θ sin 2θ

)
ij

= δij(
d

dt
− ω) +

g

|~q|2
(RθCR−θ)ij,

(3.9)

where Rθ and C have been introduced in Eq. (2.8).

We postpone to Section 7 some discussion about the supersymmetry of the model

given by the action Isusyγ (g, ω).
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4 The bosonic part of the action

We are interested at first in the vacuum and therefore in the bosonic part of the Euclidean

action Isusyγ (g, ω). After expanding the Q-exact term in (3.6), eliminating the auxiliary

fields Hx, Hy by their algebraic equations of motion and discarding the terms involving

fermions, one obtains the following Euclidean bosonic action (written, for convenience,

in polar coordinates). One has

Ibosonic =
∫
γ
dt(

1

2
ṙ2 +

1

2
r2θ̇2 + V (r, θ)), (4.1)

where the potential V (r, θ) is non-negative, being the sum of squares:

V (r, θ) =
1

2
ω2(r − a cos θ)2 +

1

2
(
g

r
+ ωa sin θ)2 =

=
1

2

g2

r2
+

1

2
ω2r2 +

agω

r
sin θ − ω2ar cos θ +

1

2
ω2a2. (4.2)

The potential possesses the interesting Z2 discrete symmetry T (T 2 = I), given by

g

r
↔ ωr, cos θ ↔ − sin θ. (4.3)

The symmetry can be expressed as

T : r 7→ r′ =
r0

2

r
, θ 7→ θ′ = −θ − π

2
, (4.4)

where r0, given by

r0 =

√
g

ω
, (4.5)

can be set as a unit of length. One can thus define the dimensionless parameter

α ≡ a

r0
=

√
a2ω

g
. (4.6)

The potential (4.2) can be expressed as the product of the dimensional factor gω times

a dimensionless function:

V (r, θ) = gω

(
1

2

(
r0
r

)2

+
1

2

(
r

r0

)2

+ α
(
r0
r

sin θ − r

r0
cos θ

)
+

1

2
α2

)
. (4.7)
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The action (4.1) is both conformally and rotationally invariant at α = 0. Both symmetries

are broken for α 6= 0. On the other hand the discrete symmetry T in (4.4) of the potential

is maintained. We will show that the potential exhibits a transition between a simple

and a double well, with a critical value for the dimensionless parameter α.

If we use r0 as the unit of length the only relevant parameter of the model is α = a.

Therefore, the parameter of the conformal symmetry breaking is the distance between the

rest point of the harmonic oscillator and the singularity of the potential 1/r2 expressed

in units of r0. At vanishing α the restored conformal symmetry is the well-known hidden

SL(2) symmetry [7, 8, 9] of quantum theories with potential r2 + 1/r2. The SL(2)

conformal symmetry without the oscillatorial term was introduced in [10] (see [1] and

[11] for its formulation in the topological setting).

5 The shape of the potential. Are there instantons?

We follow the method explained by Coleman in [5]. The potential (4.2) is a sum of

squares. The instantons are solutions of the Euclidean equations of motion giving a

finite value to the action. Since they must make it extremal, and since the action (4.1)

is non-negative, they are solutions of Eq. (3.3). Avoiding the possibility of bounces,

they should connect pairs of local maxima M± of the Euclidean potential −V (x, θ), with

V (r+, θ+) = V (r−, θ−), leaving and reaching M± at zero velocity.

In quantum mechanics with more than one degree of freedom one is often concerned

with the stability of the Euclidean solutions, even when they are energetically possible

for connecting two vacua. We should point out that in the present case the potential

(4.7), whose introduction is justified by geometrical considerations, leads to self-dual

equations (3.4) that cannot be solved analitically. We also point out, depending on the

order parameter (the coupling constant) of the model, that extrema of the potentials are

local minima, local maxima and saddle points. Despite these difficulties, it is instructive

to analyze the possibility for instantons and to draw conclusions about the classical

solutions by analyzing the shape of the potential.
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Therefore we check at first under which condition two M± maxima are obtained. The

Euclidean potential −V (r, θ) is always negative or null, with V →∞ when r →∞ and

r → 0. It is obvious that −V (r, θ), for continuity reasons due to the behaviour of the

potential at r = ∞ and r = 0, has at least one absolute maximum. The two equations

from Eq. (3.3) give, at ṙ = θ̇ = 0, the condition for an instanton to start at zero velocity

from a local maximum of the potential:

ω(r − a cos θ) = 0,
g

r
+ ωa sin θ = 0. (5.1)

At ω 6= 0, a 6= 0, these equations are equivalent to

r = a cos θ, sin 2θ = − 2g

ωa2
, tan θ = − g

ωr2
. (5.2)

It is convenient to express all results in terms of the two fundamental parameters, the

unit length r0 introduced in (4.5) and the non-negative dimensionless constant α (α ≥ 0)

introduced in (4.6).

By using this parametrization, the second equation in (5.2), since | sin 2θ| 6= 1, admits

solution only in the range

α ≥
√

2. (5.3)

Furthermore, only two maxima M± of the potential −V (r, θ), with V (M±) = 0, can

exist above the critical value αc =
√

2 for α.

We give the explicit expression of the two maxima M±, both in polar (r±, θ±) and in

Cartesian (x±, y±) coordinates. It is convenient to introduce the angle ϕ,

ϕ =
1

2
arcsin(

2

α2
), 0 < ϕ ≤ π

4
. (5.4)

In terms of ϕ we can write, in polar coordinates,

r+ = αr0 cosϕ, θ+ = −ϕ,

r− = αr0 sinϕ, θ− = ϕ− π

2
. (5.5)

In Cartesian coordinates we have

x+ = αr0 cos2 ϕ, y+ = −1

2
αr0 sin(2ϕ) = −r0

α
,

x− = αr0 sin2 ϕ, y− = −1

2
αr0 sin(2ϕ) = −r0

α
. (5.6)
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Due to the discrete T symmetry of the potential, the following relations are found:

x+ + x− = αr0, y+ = y−, (5.7)

as well as

√
r+r− = r0, θ+ + θ− = −π

2
. (5.8)

In order to further clarify the structure of the theory we compute the extremal points of

the potential (4.7), obtained by solving the coupled system of equations

∂V

∂θ
= 0 → r

r0
cos θ +

r

r0
sin θ = 0,

∂V

∂r
= 0 → r4 − r40 − αr0r(r20 sin θ + r2 cos θ) = 0. (5.9)

At the extrema, we check the sign of the second-order derivatives to determine local

minima, maxima and saddle points. We present the complete set of solutions in the

different ranges of the order parameter α:

i) at α = 0 we recover the O(2) rotational invariant theory. The case is analogous to the

one investigated in [1], with the important difference that the harmonic term allows for

a discrete spectrum with a normalizable vacuum. The unbroken O(2) symmetry implies

a S1 circle of degenerate maxima. It is given by the points at distance r0 from the origin

and −V (r0, θ) < 0;

ii) in the 0 < α <
√

2 range two extremal points are found (we call them M0a and M0b).

Their polar coordinates (which do not depend on α) are

M0a ≡ (r0,−
π

4
), M0b ≡ (r0,

3π

4
). (5.10)

By inspecting the second-order derivatives in M0a, M0b, one proves that M0a is the

unique maximum of −V (r, θ), while M0b is a saddle point. We have

−V (M0b) < −V (M0a) < 0; (5.11)

iii) at α =
√

2, the critical case, we have two extremal points as before. This time
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−V (M0α) = 0;

iv) in the range α >
√

2 we have four extremal points, the two maxima M± given by Eq.

(5.5) and the two points M0a, M0b given by Eq. (5.10). The two maxima are such that

−V (M±) = 0, while in this range of α both M0a, M0b are saddle points.

The value of the potential V (r, θ) from Eq. (4.7), computed at M0a, M0b, reads

V (M0a,b) = gω(1 +
1

2
α2 ± α

√
2), (5.12)

where the sign − (+) corresponds to M0a (M0b).

Energetically one has the possibility of a finite action trajectory linking −V (M±) and

passing through M0a and/or M0b. It is an open question, left for future investigation,

whether such a trajectory indeed exists.

6 The fermionic part of the action

The fermionic part of the Isusyγ (g, ω) action (3.6) is

Ifermion = −
∫
dt ( Ψx Ψy )Q

(
ẋ− gy

x2+y2
− ω(x− a)

ẏ + gx
x2+y2

− ωy

)
. (6.1)

By taking into account Eq. (3.7) for the operator Q one has

Ifermion =
∫
dt ( Ψx Ψy )

( d
dt + g 2xy

(x2+y2)2
− ω −g x2−y2

(x2+y2)2

−g x2−y2
(x2+y2)2

d
dt − g

2xy
(x2+y2)2

− ω

)(
Ψx

Ψy

)
. (6.2)

We call this expression the “classical fermionic action”; the fermions Ψx,Ψy,Ψx,Ψy are

time-dependent anticommuting Grassmann variables.

The fermionic zero modes are defined as the solutions of the following equation,(
Ψ̇x

Ψ̇y

)
=

1

r2

(−g sin 2θ + ωr2 g cos 2θ

g cos 2θ g sin 2θ + ωr2

)(
Ψx

Ψy

)
=

=
1

r2

(
cos θ − sin θ

sin θ cos θ

)(
ωr2 g

g ωr2

)(
cos θ sin θ

− sin θ cos θ

)(
Ψx

Ψy

)
. (6.3)

By setting Ψ = Ψx + iΨy one can also write

Ψ̇ = i
g

r2
exp(i2θ) Ψ∗ + ωΨ. (6.4)
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In the above equation the functions r(t) and θ(t) solve the self-duality equations (3.4).

By redefining Ψ→ Ψ̃ = exp(−iθ)Ψ, one gets the equation

˙̃Ψ + iθ̇Ψ̃ = i
g

r2
Ψ̃∗ + ωΨ̃. (6.5)

By expressing θ̇ in terms of the second equation of (3.4), one has

θ̇ =
g

r2
+
ωa

r
sin θ, (6.6)

so that one gets the following zero mode equation

˙̃Ψ + (i
g

r2
+ i

ωa

r
sin θ − ω)Ψ̃ = i

g

r2
Ψ̃∗. (6.7)

This first order differential equation indicates that, most likely, fermionic zero modes

exist in the background of the r(t), θ(t) solutions of the self-duality equations (3.4).

7 The supersymmetric Hamiltonian

The passage from the supersymmetric Lagrangian entering (3.6) to the classical Hamil-

tonian formulation is done following the standard prescription, by performing a Legendre

transformation for both bosonic and fermionic coordinates. One introduces the conju-

gate momenta pi to the coordinates qi, while the fermionic Grassmann fields Ψi turn out

to be conjugate to the fermionic fields Ψi. The Poisson brackets are Z2-graded. The

non-vanishing Poisson brackets are

{pi, qj} = δij, {Ψi,Ψj} = δij. (7.1)

The classical Hamiltonian H is N = 2 supersymmetric. It corresponds to the Morse

function S = gθ + ω
2
|~q −−→OA|2. The supersymmetric charges Q,Q are given by

Q = Ψi(pi − Si), Q = Ψ
i
(pi + Si), (7.2)

where

Si =
δS

δqi
= gεij

qj

|~q|2
+ ω(qi − ai), (a1 = a, a2 = 0). (7.3)
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One has

H =
1

2
{Q,Q} =

1

2
p2i −

1

2
S2
i −Ψ

i ∂Si
∂qj

Ψj. (7.4)

A quick computation shows that the classical fermionic part of the Hamiltonian is

Ψ
i
(
∂Si
∂qj

)Ψj = ω(R−θΨ)i
(
I2 +

r20
r2
C
)
ij

(R−θΨ)j, (7.5)

where I2 is the 2 × 2 identity matrix, while R−θ, C have been introduced in (2.8). At

this level Ψi and Ψ
i

are Grassmann variables and one can compute correlation functions

within the functional integral approach.

The quantum Hamiltonian H is obtained by realizing the Z2-graded Poisson brack-

ets (7.1) in terms of (anti)commutators. This implies, in particular, that the quantum

fermionic operators Ψi, Ψ
i

are given by constant matrices satisfying Clifford algebra re-

lations; for this reason extra terms are present with respect to the (7.4) expression of the

Hamiltonian.

By performing an analytic continuation and a Wick rotation of the time coordinate,

we can go back and forth from the Euclidean time to the real time formulation of the

theory. We present here the results for the real time formulation. This means that the

quantum Hamiltonian H is hermitian and the quantum supercharges Q, Q are hermitian

conjugates:

H = H†, Q† = Q. (7.6)

A convenient presentation of the quantum fermionic operators Ψi,Ψ
i

is via the 4 × 4

matrices ξ±i, through the positions

ξ±i = Ψi ±Ψ
i
, (7.7)

where ξ±i are given by

ξ+1 =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

, ξ+2 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

,
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ξ−1 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

, ξ−2 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

. (7.8)

The matrices ξ±i generate the Cl(2, 2) Clifford algebra. Indeed, by setting

Γµ ≡ (ξ+1, ξ+2, ξ−1, ξ−2), (7.9)

for µ = 1, 2, 3, 4, we end up with the basic relations, for their anticommutators,

{Γµ,Γν} = 2ηµνI4, (7.10)

where ηµν is the flat metric with diagonal entries (1, 1,−1,−1).

The hamiltonian H and the supercharges Q,Q can be expressed as 4× 4 differential

matrix operators. In polar coordinates the hamiltonian is

H =
(
−1

2
(∂2r +

1

r
∂r +

1

r2
∂2θ ) + V0(r, θ)

)
· I4 + V1(r, θ), (7.11)

where V0(r, θ) coincides with the potential in Eq. (4.2), namely

V0(r, θ) =
1

2

g2

r2
+

1

2
ω2r2 +

agω

r
sin θ − ω2ar cos θ +

1

2
ω2a2, (7.12)

while

V1(r, θ) =


ω 0 0 0

0 −ω 0 0

0 0 − g
r2

sin(2θ) − g
r2

cos(2θ)

0 0 − g
r2

cos(2θ) g
r2

sin(2θ)

. (7.13)

The supercharge Q is explicitly given by

Q =


0 0 e13 e14

0 0 0 0

0 e32 0 0

0 e42 0 0

, (7.14)

with

e13 = −e42 = −i(cos θ∂r −
1

r
sin θ∂θ)− iω(r cos θ − a) +

ig sin θ

r
,

e14 = e32 = i(sin θ∂r +
1

r
cos θ∂θ) + iωr sin θ +

ig cos θ

r
. (7.15)
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The supercharge Q is the hermitian conjugate of the matrix given in Eq. (7.14).

The operators H, Q, Q satisfy the N = 2 superalgebra

{Q,Q} = 2H, [H,Q] = [H,Q] = {Q,Q} = {Q,Q} = 0. (7.16)

The Fermion Parity Operator NF is given by the 4× 4 diagonal matrix

NF = diag(1, 1,−1,−1). (7.17)

Bosons (fermions) are the eigenvectors of NF with eigenvalues +1 (−1).

We note that the Hamiltonian (7.11) cannot be diagonalized. Indeed, a rotation,

acting on fermions alone, which diagonalizes the potential V1(r, θ), is θ-dependent, so

that it produces non-diagonal terms when applied to the Laplacian. By realizing that the

lower two-dimensional block in V1(r, θ) can be expressed as − g
r2
R−θCRθ, where Rθ, C

have been introduced in (2.8), a simpler expression for the quantum dynamics is given

by the hamiltonian Ĥ, unitarily equivalent to H via the transformation

Ĥ =

(
I2 0

0 R−θ

)
H

(
I2 0

0 Rθ

)
. (7.18)

One has

Ĥ =
(
−1

2
(∂2r +

1

r
∂r +

1

r2
∂2θ ) + V0(r, θ)

)
· I4 + V̂1(r, θ), (7.19)

where the 4× 4 matrix V̂1(r, θ) is decomposed in 2× 2 blocks according to

V̂1(r, θ) =

(
ωσ3 0

0 − 1
2r2

(I2 + 2(∂θ + g)C)

)
. (7.20)

σ3 is the diagonal Pauli matrix, while C = σ1 is the conjugation matrix introduced in

(2.8). The non-diagonal terms correspond to a first-order differential operator.

8 Conclusions

We introduced a deformation of the conformally invariant topological quantum model [1]

of a particle moving on the punctured plane. The modified potential depends on a length
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scale r0 and on a dimensionless parameter α ≥ 0. It explicitly breaks the rotational and

the conformal invariance, but it preseves a discrete Z2 simmetry given by the idempotent

map r/r0 → r0/r and θ → −θ − π/4 . The role of α is that of an order parameter with

a critical value αc =
√

2. Below that value (for 0 < α ≤
√

2) the ground state is unique.

Above that value (α >
√

2) the ground state is doubly degenerate.

Two key features distinguish this potential with respect to the well-known Higgs

potential λ(|~q|2−m
λ

)2 in the plane. The first one is the presence of an angular dependence

(since the model is not rotationally invariant). The second relevant feature is that, above

the critical value, the extremal points are the two ground states and two saddle points

(therefore, the theory does not possess local maxima).

We proved (with techniques similar as those applied in [5], [12]) that, in the Eu-

clideanized version of the model, instantons as defined by Coleman are energetically

possible. The actual existence of the instantons, due to the fact that the self-duality

equations are not analitically solvable and the potential has a complicated structure for

the presence of saddle points, is an open question which deserves further investigations.

The BRSTQFT (see [6]) gauge-fixing method induces a N = 2 supersymmetric

quantum mechanics that we constructed both in the path-integral (the fermionic time-

dependent fields are Grassmann coordinates) and in the operatorial (the fermionic degrees

of freedom are realized by Clifford matrices) frameworks.

In the operatorial (and real time) formulation the Hamiltonian is a 4 × 4 hermitian

differential operator. By construction the Hamiltonian, for any α ≥ 0, has a well-defined,

discrete and bounded from below, spectrum. The Hamiltonian is non-diagonalizable and

this is another indication of the richness and the non-triviality of the model.

We leave for a future paper the computation of the spectrum (numerical, if not

analytical) of this quantum theory and of its further properties.

As mentioned in the Introduction the construction of this model with such a critical

phenomenon was found by searching for a potential that can possibly simulate the con-

straints of a mechanical device that acts as a series of locks, allowing the propagation of
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signals from one side to the other of a chain, reproducing the behaviour of some of the

machines described in [3].
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