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Abstract

We investigate the observational consequences of the light-like deformations of
the Poincaré algebra induced by the jordanian and the extended jordanian classes
of Drinfel’d twists. Twist-deformed generators belonging to a Universal Enveloping
Algebra close non-linear W-algebras. In some cases the WW-algebra is responsible
for the existence of bounded domains of the deformed generators. The Hopf algebra
coproduct implies associative non-linear additivity of the multi-particle states. A
subalgebra of twist-deformed observables is recovered whenever the twist-deformed
generators are either hermitian or pseudo-hermitian with respect to a common in-
vertible hermitian operator.
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1 Introduction

This paper addresses the problem of the observational consequences of twist-deforming
the Poincaré algebra. We work within a quantization scheme which has been previously
applied to Drinfel’d twist deformations of quantum theories in a non-relativistic setting
[1]-[4]. Open questions are investigated. We mention, in particular, the nature of the
observables: which of them are consistently maintained in the deformed theory either as
hermitian or pseudo-hermitian operators? To be specific, in the large class of deformed
Poincaré theories (which include, e.g., k-Poincaré theories [5]-[7], Deformed Special Rel-
ativity theories [8, 9] and many other examples [10]-[12]) we focus on the Drinfel’d twist
[13, 14] deformations of a light-like direction. Due to this reason the deformations we
consider here are based on the jordanian [15]-[17] and on the extended jordanian [18]
twist (for physical applications of the Jordanian twist see [19, 20] and, for the extended
Jordanian twist, [21]-[26]).

The deformations can be encoded in twist-deformed generators which, essentially,
correspond to twist-covariant generalizations of the Bopp-shift [27]. The operators which
in the undeformed case are associated with generators of the Lie algebra are, under a
twist, mapped into given elements of the Universal Enveloping Algebra.

Observables in connection with twist-deformed generators were addressed in [28]. In
our work we investigate different twists and present a different approach to the issue.

Different deformed theories are obtained from the original twist and its flipped version
(obtained by a permutation of the tensor space).

A common feature of the deformed theories is that the deformed generators define
a closed non-linear W-algebra (antisymmetry and Jacobi identities are respected, but
the right hand side is a non-linear combination of the generators). Furthermore, the de-
formation modifies the domain of the physical parameters. For instance, in the simplest
non-trivial case, the jordanian deformation implies the introduction of a maximal momen-
tum along a light-cone direction. Induced by the coproduct (see [4]), non-linear addition
formulas are obtained for multi-particle states. The non-linear addition formulas satisfy
associativity. Their main raison d’étre is that they allow to respect the domain of validity
of the physical quantities (in the example above, the composite momentum along the
light-cone direction is bounded by the maximal value). We postpone to the Conclusions
a more detailed discussion of the implications of our results.

The scheme of the paper is as follows. The jordanian and the extended jordanian
twists are recalled in Section 2. In Section 3 twist-deformed generators are introduced.
In Section 4 the (pseudo)-hermiticity property of twist-deformed generators is discussed.
The arising of a non-linear W-algebra is investigated in Section 5. The bounded domains
of deformed physical observables and non-linear additive formulas are discussed in Section
6. For completeness in the Appendix the (undeformed) Poincaré algebra in the light-cone
basis is presented.
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2 Jordanian versus extended Jordanian twist

We recall, see [29, 30] for details, that a Drinfel’d twist deformation of a Hopf Algebra A
is induced by an invertible element F € A ® A which satisfies the cocycle condition

1F)(ide A)F = (Fe1)(A®id)F. (1)
In Sweedler’s notation [31] F can be expanded according to

F=flaf , F'=F o, (2)

For A = U(G), the Universal Enveloping Algebra of a Lie algebra G, the elements of F
are taken from an even-dimensional subalgebra of G. Therefore the simplest cases of twist
are found for two-dimensional subalgebras.

There are (over C) two inequivalent two-dimensional Lie algebras (we denote the
generators as a, b):

i) the abelian algebra [a,b] = 0 and

ii) the non-abelian algebra [a, b] = ib.

The case 1), the abelian twist, leads to constant non-commutativity (see, e.g., [32, 1]).

In this paper we focus on the second case. The non-abelian algebra i) is, for example,
the Borel subalgebra of si(2). The sl(2) generators can be presented as D, H, K, satisfying
the commutation relations

[D,H] =iH, [D,K]=—iK, [K, H]=2iD. (3)

We can identify D = a and H = b. This leads, see [3], to non-commutativity of Snyder

type.
We can also regard i) as the subalgebra of a d-dimensional Poincaré algebra P(d).
From its generators Py, Py, My, whose commutators are

[Py, Pl =0, [Mo,BR)=—iP, [Mn,P]=1ibP, (4)

one can identify the i) subalgebra from the positions a = —My, b= P, = Py + P;.
The abelian algebra i) induces the abelian twist

F = exp(—iaa®b), (5)

where « is the (dimensional) deformation parameter.
The non-abelian algebra 1) induces the non-abelian (jordanian) twist [15]-[17]

F = exp(—ia X ln(l + Oéb)), (6)

where « is the (dimensional) deformation parameter.
Under the transposition operator 7 (7(v ® w) = w ® v), the transposed twist

F. = exp(—iln(1+ ab) ® a), (7)

still satisfies the cocycle condition (1). We are using both F and F, in our paper.
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The jordanian and the extended jordanian twist of the d-dimensional Poincaré algebra
can be expressed, in terms of light-cone coordinates (see the Appendix for the d = 4 case)
and Einstein’s convention, through the position (see, e.g., [22])

P,
F = exp (z]\/[ ®@In(1+ aPy) +ieMy; @ In(1 + aPJr)P—]) : (8)
+
The jordanian case is recovered for e = 0; the extended jordanian case is recovered for
e = 1. In two dimensions the two twists coincide since there are no transverse directions.
Under transposition, the F, twist is given by

P.
F. = exp (z In(1+ aPy)® M +ieln(1 + aP+)P—J ® M+j) : 9)
+

The following four kinds of twist-deformations can be considered: the jordanian defor-
mations (¢ = 0) based on F (case I) and F, (case II) and the extended jordanian
deformations (e = 1) based on F (case III) and F, (case IV).

3 Twist-deformed generators

A twist deformation can be expressed in terms of the twist-deformed generators (see
[32, 33, 1]). Under deformation, a Lie algebra generator ¢ € G is mapped into the
Universal Enveloping Algebra element g7 € U(G), given by

7 = F@fs F'=TaTF,. (10)

In this paper we consider a Lie algebra G = {P,, M,,,,, ¥, h} containing the d-dimensional
Poincaré algebra as a subalgebra (see the Appendix for the ordinary d = 4 spacetime).
We present the twist deformations for the previous Section cases I, I1 and IV, whose
twist deformed generators can be presented in closed form.
In the case I (F twist with € = 0) we have

1

Pl = p,———

+ +]_+O[P+7

P = P.(1+aP,),

pPr = P,

M7 = M,

1

M = M, ——

+ 14+ aP,’
M7, = M_;(1+aPy),

N7 = N (11)

and

1
F -
of = z_(1+aPy),
f
J

= l’j.

(12)
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The undeformed generators can be expressed in terms of the deformed generators on the
basis of inverse formulas. In particular we have

1
P, = P’

1 —aP!’
v pr 1+aP b (13)
— — o = .
1+aP, T T 1—aP!
The twist-deformed generators for the transposed twists F,, with ¢ = 0, 1, are
P; = P,
14 2aPy aP; P;
1+aP, +E(1+aP+ a(l+a +)P+) :
M, = My;+eln(l+aPy)M,;,
2aP; P; 20P; Py, PP,
M = M+ —L M In(1 P)-Lop +—2L— —2In(1 P22 | My,
—J J+1+OZP_|_ +€<n( +Oé +)P+ jk+(1+OéP+)P+ n( +& +)P+2 +k
P
N7 = N —eepIn(1+ aP+)P—kM+j (14)
+
and
Z‘i = Ty,
2ach o In(1+aPy)\ P
T = o4 —— M+2h — ) LMy
R R I =X P, p,
1
x]f = x; —e€phIn(l + O‘P+)P_+M+j' (15)

The bullet o denotes =+, (all translation generators are undeformed). The summation
over repeated indices is understood.

4 The hermiticity and pseudo-hermiticity condition
for twist-deformed generators

For an operator ) the hermiticity condition is Qf = (.
The pseudohermiticity condition [34] is

Q= pn !, (16)

for some invertible hermitian operator n = n'.
For the jordanian twist the pseudo-hermiticity properties of the deformed generators
are the following.
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In case I (jordanian F twist with € = 0):

PIT = PIy, WAER,
M7 = M7, ie. A =0,
MEY = PMInY, VAER,

Fio_ Fo-1 _
M~ = nMZn ", ie A=1,

NFT = PNFpA WA ER, (17)
together with
xfT = n’\asfn_)‘, VA e R,
$]_:T = nalnt, r.e. A =1,
:lcjfT = n’\xfn’A, VA eR,
(18)

for the hermitian operator n =1+ aP;,.

One can observe that, in this case, the subset of hermitian (A = 0) deformed opera-
tors is given by {P{, P/, MF N7 ij, ol x7, W7}, since the operators M7, 27 are not
hermitian.

In the case 1 (jordanian F, twist with ¢ = 0) we have

PF" = PPFpY, VAER,

MFh = nM*n7t, de. A =1,
MEY = PMInY, VAER,

NFY = PNTpA WA ER, (19)
together with
:L‘f = n)‘xfn_A VA eR,
a:fT = n)‘:vfn A VAER,
(20)
1+G£P+

for the hermitian operator n = 1757 P

Unlike the other deformed generators, M fj, z? do not satisfy the pseudo-hermiticity
condition for any choice of 7.

It is worth pointing out that by taking the choice A = 1, we formally obtain the same
set of PL, PJ', M7, N7, M{;,x7,x], h” deformed generators as in the previous case. They
are now, of course, dlfferent operators which satisfy a pseudo-hermiticity condition. As
we shall see, they close a non-linear W-algebra.

For the extended jordanian twist, cases I1] and IV, one can verify by explicit com-
putation through a Taylor expansion in the deformation parameter a, that most of the
deformed generators are neither hermitian nor pseudo-hermitian.
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5 Deformed algebras as non-linear W-algebras

In the case I (the jordanian F twist with ¢ = 0) the deformed generators induce non-
linear (at most quadratic) W-algebras. The basis of deformed generators, defining the
Gapr W-algebra is given by

Gyr + {7 al,a], P, P}, M7 N7 ML} (21)

Some of its relevant subalgebras are the deformed Poincaré subalgebra Pg,, with basis of
deformed generators given by

Parp {Pf,Pf, M7, Nf,ij}, (22)

as well as the subalgebra of mutually consistent observables (generators with the same
hermiticity /pseudo-hermiticity property). The G, and the P, subalgebras of observ-
ables are respectively given by

Govs = {7, a2l al , P[P/ M7 N" M} (23)
and
Pos : {PL, P/ M7 N" M} (24)
The non-vanishing commutation relations of the Gy, W-algebra are explicitly given by
(PL, M7 = +iP{ FiaP] P,
[PT, MT) = 2iP],
[P7, M7)] 2iaPT P/,
[Pr ML, = 0P,
(M7, ML) = FiM{, +iaML,P],
N7 MZ) = iep M,
(M, M7, —2i6;s M7 — 2ie;, N7 — 2iaM ], P/,
(M7, M7] = 2ia(MT,P] — M7,.P)),
(Pl 27] = 2" (1 - aP]),
(P72t = 27,
(P72 = 2iah” P7,
[Pl al] = —idph”,
(M7, 27] = Fiz] tiax]PL,
[Nf,a:f] = Ty,
[M];,27] = —2ix] — 2iah” M{,
[M_fj, xf] —Zixf + QiafojF,
(M7, 7] 2ia(W" M7, — 27 P)),
[Mf],xf] = —iéjkmir,
]

= —2iah” 2. (25)
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From the above formulas one can check that Py, Gops and Pyys close as non-linear W-
subalgebras.

In case I (the jordanian F, twist) the algebra of the deformed observables, given
by the operators i7", %, x7, PL, P/, M7, N7 M7, obtained from formulas (14) and (15)
with € = 0, also closes as a non-linear W-algebra. In this class of operators the only one
which differs from its undeformed counterpart is M7, given by

F v g L+2P,  142aPT
’ 1+OJP+ 1+OCP_"Z:

(26)

It turns out that the commutators with non-linear right hand side are the following ones:

(M7, P]] = FizP!,

(M7, M]] = —iZzMI},
(M7 2] = —iZaxl. (27)

All the remaining commutators are linear and coincide with the ones (see the Appendix)
for the undeformed generators.

6 Bounded domains and non-linear additivity in de-
formed systems

The second order (mass-term) Casimir of the Poincaré algebra
C, = PP —(P) (28)

remains undeformed under the twist-deformations I, I, IV introduced in Section 2. We
get

C; = PIPT—(PPV (20)

All ten twisted generators (collectively denoted as g7, I = 1,...,10) entering their re-
spective deformed Poincaré algebras, commute with C:

lg7,Cs] = 0, Vgf. (30)

To analyze the physical consequences of the deformation we consider here the simplest
setting, namely the case I (the F jordanian twist with ¢ = 0). We will discuss the
properties of the deformed momenta and their non-linear addition formulas.

Let’s set, for simplicity, the transverse momenta P; = 0. For convenience we introduce
new variables, defined as

T:PJ’_, l:P_,
GZP(), p:Pl (31)

Since Py = Py + P, we have

e=5(r+1) p=1(r—1), (32)
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with e representing the energy of the system.
For a massive representation we get, on shell,

rl =m?, e? — p* =m? (33)

Let’s set, without loss of generality, m = 1. Therefore

rl = 1,
e? —p? = 1,
1
I = -
r
1 1
e = §(T+;)a
1 1
= —(r—- 34
p 5 =) (34)

In order to have a positive energy e, r should be non-negative. The observables are
therefore bounded in the domains

r € 0,400,
[ € ]0,+oc],
e € [1,+00],
p € [—o0,+00]. (35)

The rest condition for the P; momentum corresponds to p = 0 obtained at » = 1. For
this value the energy is minimal (e = 1).

The twist-deformed variables will be denoted with a bar, the deformation parameter
being . We have

=3l
I

=101 .
T o [=11+ar) (36)

The condition

e
v
o

(37)

has to be imposed to avoid singularities.
On-shell we have

1
- (1
l r( + ar),
1L 1 r 1
- 2(r+l)_2(1+ar+r(1+ar))’
1 -1 r 1
b= Z(T_l)_2<1—|—oz'r r(l—i_&r))' (38)

The rest condition p = 0 for the deformed P, momentum is obtained for

r = ) (39)
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Since r should be positive, one finds the restriction @ < 1. Therefore, the range of the
deformation parameter « is

0<a<l (40)

As a consequence, the domains of the deformed operators are modified with respect to
their undeformed counterparts. We get

Foe ]o,é[
I € Ja,+o,
e € [1,+o0],
P € [-oopla— )l (a1)

Following [4], the additive formulas of the deformed momenta are induced by their
coproduct. In particular, the 2-particle addition formula for the deformed P, momenta
71,79 of, respectively, the first and the second particle reads, in terms of the undeformed
momenta, as

r1+ 7o

7 = - = 42
1 1+ ar) + 7o) (42)
Closely expressed in terms of the deformed momenta it is given by
B AT — QT T
Fiio T+ 7o _ QriTy (43)

11—« 7172
The binary operation defined by Eq. (43) is a group operation with 7 = 0 as identity

element and inverse element given by 77! = ——Z—_ The associativity is satisfied due to

1—2a7
the relation

T1 + Ty + T3 — 2a(T1Ty + ToTs + T3T1) + 30°T1T2T3

44
1-— a2 (7172 + 7273 + 73f1> + 20&3717273 ( )

T(14+2)+3 = T14(2+3)
It should be noted, however, that the physical requirement of 7 belonging to the domain
in Eq. (41) excludes the identity and the inverse element from the physical values. Thus,
on physical states, the addition formula (43) only satisfies the properties of a semigroup
operation.
It is useful to compare the formula (43) with the non-linear addition of velocities in
special relativity. Let us change variables once more and set 719 = vy 9, @ = %
In special relativity we have

U1 + VU2
v —_— . 45
1+2,s.1. 1+ CLQ/UI/UQ ( )
In the above jordanian deformation we get
U1 + U2 — 21)11)2
U142,jd. ° (46)

1
1— C—2U1’U2
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Both non-linear addition formulas are symmetric in the v; <+ v9 exchange and asso-
ciative.

They can also be defined in the interval 0 < v; 5 < ¢, so that the non-linear additive
velocities belong to the [0, ¢] range (in both cases if v; = 0, then v1,9 = v and, if v; = ¢,
U142 = C).

The main difference is that in special relativity the formula can be nicely extended to
negative velocities belonging to the —c¢ < vy 5 < ¢ interval. This is not the case for the
non-linear addition formula based on the jordanian deformation.

It is worth to point out that an important feature of the non-linear additivity consists
in respecting the physical domain of the variables defining the multi-particle state.

7 Conclusions

In this paper we investigated the observational consequences of the light-like deforma-
tions of the Poincaré algebra induced by the jordanian and the extended jordanian twists
(which both belong to the class of Drinfel’d twist deformations). We used the framework
of [1}-[4] where, in particular, the deformed quantum theory is recovered from deformed
twist-generators belonging to a Universal Enveloping Algebra. The Hopf algebra structure
of the twist-deformation controls the physical properties of the theory. The deformed gen-
erators induce non-linear W-algebras, while the coproduct implies associative non-linear
additivity of the multi-particle states. In the simplest setting of the jordanian deforma-
tion along a light-cone direction, these non-linearities consistently imply the existence of
a maximal light-cone momentum. The undeformed theory is recovered by allowing the
maximal light-cone momentum to go to infinity. This situation finds a parallelism, as we
noted, with the light velocity as the maximal speed in special relativity.

A question that we raised regards the status, as observables of a quantum theory,
of the deformed generators. It is rewarding that for the jordanian deformation a large
subset of the deformed Poincaré generators are pseudo-hermitian for the same choice of an
invertible hermitian 7 operator, see e.g. formula (19). Therefore, they are observable with
respect to the n-modified inner product [34]. This subset of observables close a non-linear
W-algebra as a consistent deformation of a Poincaré subalgebra.

The picture is different for the extended jordanian twist. One can explicitly check, by
Taylor-expanding in power series of the deformation parameter, that most of the Poincaré
deformed generators are neither hermitian nor pseudo-hermitian. It is still an open ques-
tion the status as observables of the extended jordanian twist-deformed generators.

Appendix: Poincaré algebra in the light-cone basis.

We work with the metric 7, = diag(—1,1,1,1) (u,v =0,1,2,3).
The Poincaré algebra is given by the commutators

[P,uv P,,] = 0,
(M, Pp] = inupPy — inup By,

(M, Myol = inu,Mye — 0o My, — iy Mue + 100 M. (47)
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In terms of the spacetime coordinates «* (z,), with =0, j and j = 1,2, 3, the Poincaré
generators can be realized through the positions

P = ihﬁixo’
P, = _ma%,
My, = _moﬁimj — mjaixo’
M, = —ixjaixk + mk% (48)

P,, M,,, together with the coordinates x, and the central charge & close a Lie algebra

g = {PH,?\IZ/’W, x,, h} whose remaining non-vanishing commutators are given by
[Py, xo] = ih,
[Pj, xk] = —iéjkh,
[Moj, 0] = —ixj,
(Moj, xx] = —izodjy,
(Mg, z,] = —ix;0k + (x50 (49)

The light-cone coordinates mix the time-direction xy and the space direction zi; the

remaining space coordinates are the transverse directions. The light-cone generators are

labeled by the indices + and j = 1,2. The latter is used for the transverse coordinates.
In the light-cone basis the generators are expressed through the positions

E:ﬁ: = 29 + Xy, fj = Tj41 (50)
and
P.=P+P,  P;=Pu,
M = M+, = M017
My; = Mojyi & M,
N = My, (51)

In the above formulas relating the two presentations of space-time coordinates and Poincaré
generators, for reason of clarity, the Poincaré generators and space-time coordinates ex-
pressed in the light-cone variables are overlined. Since however in the main text we only
work with light-cone quantities and no confusion will arise, for simplicity, these quantities
will not be overlined.

In the light-cone basis the non-vanishing commutators of the Poincaré algebra read as
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follows
[M,P.] = FiPx,
[Ma Mij] = :[:iMija
[Myj, Pe] = —2iP;,
My, Py] = —idjPy,
[M+j, M,k] = —225]kM - 2i€jkN,
[Mij, N] = —iejpMyg,
[N, P]] = z'ejkPk (52)
(the constant antisymmetric tensor is €10 = —€5; = 1).

The non-vanishing commutators of the Poincaré generators with the light-cone coor-
dinates x4, x; are

[Pi,zs] = 2ih,
[Pj, l‘k] = —iéjkh,
M,z4] = Fizg,
[Mij> .CE;F] = —27;33]',
(Myj,xp] = —ixgdj,
[N, .’L’j] = iEjkLEk. (53)
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