
Helicity decoupling

in the massless limit of massive tensor fields∗

Jens Mund
Departamento de F́ısica, Universidade Federal de Juiz de Fora,

Juiz de Fora 36036-900, MG, Brasil
email: mund@fisica.ufjf.br

Karl-Henning Rehren
Institut für Theoretische Physik, Universität Göttingen, 37077 Göttingen, Germany

email: rehren@theorie.physik.uni-goettingen.de

Bert Schroer
Institut für Theoretische Physik der FU Berlin, Berlin, Germany

Centro Brasileiro de Pesquisas F́ısicas, 22290-180 Rio de Janeiro, RJ, Brasil
email: schroer@zedat.fu-berlin.de, schroer@cbpf.br

March 28, 2017

Abstract

Massive and massless potentials play an essential role in the perturbative
formulation of particle interactions. Many difficulties arise due to the indefinite
metric in gauge theoretic approaches, or the increase with the spin of the UV
dimension of massive potentials. All these problems can be evaded in one stroke:
modify the potentials by suitable terms that leave unchanged the field strengths,
but are not polynomial in the momenta. This feature implies a weaker local-
ization property: the potentials are “string-localized”. In this setting, several
old issues can be solved directly in the physical Hilbert space of the respective
particles: We construct stress-energy tensors for massless fields of any helicity
(thus evading the Weinberg-Witten theorem). We can control the separation
of helicities in the massless limit of higher spin fields and conversely we recover
massive potentials with 2s+1 degrees of freedom by a smooth deformation of the
massless potentials (“fattening”). We arrive at a simple understanding of the van
Dam-Veltman-Zakharov discontinuity concerning, e.g., the distinction between a
massless or a very light graviton. Finally, the use of string-localized fields opens
new perspectives for interacting quantum field theories with, e.g., vector bosons
or gravitons.

∗An abridged version of this paper, focussing on spin s = 1 and s = 2, is [MRS17].
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1 Overview

Hilbert space positivity is indispensible for the interpretation of every quantum the-
ory. However, for massless potentials of spin s ≥ 1 there is a conflict between positiv-
ity, covariance, and local commutation relations (well-known for the Maxwell potential
[W95]).

The massless potentials are, however, required to formulate interactions through min-
imal coupling, as in QED. In covariant frameworks, one uses auxiliary potentials with
indefinite 2-point functions, hence defined on indefinite state spaces (Krein spaces).
The free field strength lives on the Hilbert space defined by its own positive-definite
2-point function, obtained by taking the curls of the indefinite 2-point function of the
potential.

However, in the interacting theory, one has to work in the Krein space, and proceed
to a Hilbert space for the gauge invariant quantities by the Gupta-Bleuler or the more
modern BRST cohomological methods.

On the other hand, massive potentials suffer from their bad UV behaviour which
jeopardizes perturbative interactions by the power counting argument, or one uses
the Feynman gauge which brings back the problems of indefinite metric.

The purpose of this contribution is to formulate and investigate a unified setting
for potentials describing both massless and massive vector and tensor bosons, that
live in Hilbert space and have the good UV behaviour needed for renormalizable
perturbative interactions. The Hilbert space is that of the field strengths, which have
no positivity problems. Our focus is here on the free fields, and in particular on the
limit m → 0 that is smooth in this setting. We comment on the issues concerning
interactions in appropriate places, and otherwise refer to the literature.

Classical aspects of higher spin fields were treated in various papers, in particular
in [F78, FV87, V00, V04]. For low spin, Lagrangean quantization respects quantum
positivity (although positivity has no classical counterpart) but for higher spin there
are problems. By constructing our free fields in the unitary Wigner representations,
we can fully explore the interplay between positivity and causal localization and
solve various problems that cannot be addressed in the indefinite gauge theoretical
formalism.

Before we turn to our new results, we briefly recall the well-known general problem-
atics for free fields.

We shall write 2-point functions throughout as

(Ω, X(x)Y (y)Ω) =

∫
dµm(p) · e−ip(x−y) · mMX,Y (p),

where dµm(p) = d4p
(2π)3

δ(p2 −m2)θ(p0). Our sign convention is η00 = +1.

Example 1.1 Massless fields. For s = 1, the massless (= Maxwell) field strength
has the 2-point function

0M
Fµν ,Fκλ = −pµpκηνλ + pνpκηµλ + pµpληνκ − pνpληµκ.
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The field strength is constructed on the Fock space over the unitary Wigner represen-
tations of the Poincaré group with helicity h = ±1, as exposed in standard textbooks
[W95]. To find potentials such that Fµν = ∂µAν − ∂νAµ, one has several options:
E.g., the Coulomb gauge potential with AC

0 = 0 and 2-point function

0M
AC
i ,A

C
j = δij −

pipj
|~p|2

(1.1)

can be defined on the same Hilbert space, but it fails to transform as a vector field
and is non-local [W95]. The Krein potential with 2-point function

0M
AK
µ ,A

K
κ = −ηµκ

obviously violates positivity, and cannot be defined on the Hilbert space of the field
strength. When the potentials are required for the formulation of interaction, one
has to compromise between positivity or Lorentz invariance, and preference is usually
given to covariance.

The situation is similar with s = 2. We only display for later reference the indefinite
2-point function of the Krein potential which reproduces the positive1 2-point function

of the field strength2 F
(2)
[µ1ν1][µ2ν2]

by taking the curl in all indices:

0M
AK
µν ,A

K
κλ =

1

2

[
ηµκηνλ + ηµνηκλ

]
− 1

2
ηµνηκλ. (1.2)

In the massive case with integer spin, the problems are of a different nature. By field
equations like

∂µFµν = −m2AP
ν (1.3)

for the Proca field, the potential can be defined from its field strength. When the
latter is constructed on the Fock space over the (m, s) Wigner representation [W95],
the resulting positive 2-point function of the potential is a polynomial in the projection
matrix orthogonal to the momentum

πµν(p) = ηµν −
pµpν
m2

, (1.4)

see the Example 1.2 below.

Due to the momenta in the numerator, massive potentials have strong short-distance
fluctuations which give them a UV dimension dUV = s + 1 and, by power counting,
jeopardize the renormalizability of minimal couplings to higher spin currents.

Only their field strengths have a massless limit because the curls “kill” the mass
denominators along with the momenta in the numerators. Therefore, one may choose
the Feynman gauge by replacing πµν by ηµν , which gives the same field strengths and
avoids the bad UV behaviour, but brings back negative norm states.

The case s = 2 illustrates that, even if the massless limit of the field strength exists,
it does not coincide with the massive field strength.

1By “positive”, it is actually understood ”positive-semidefinite”, accounting for the null states
due to equations of motion.

2For s ≥ 2 there are “partial” field strengths by taking the curl in 1 ≤ n ≤ s indices [F39]. Unless
stated otherwise, we always understand the highest field strength (curl in all indices).
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Example 1.2 Massive fields. For s = 1, we have the Proca field Eq. (1.3) satisfy-
ing ∂µAP

µ = 0. Its positive 2-point function is

mM
AP
µ ,A

P
ν = −πµν(p). (1.5)

For s = 2, the symmetric, traceless and conserved Proca field3 is given by the field
equations ∂µ∂νF[µκ][νλ] = ∂µ(−m2FP

[µκ]λ) = (−m2)2AP
κλ. Its 2-point function is

mM
AP
µν ,A

P
κλ =

1

2

[
πµκπνλ + πµλπκν

]
− 1

3
πµνπκλ. (1.6)

We emphasize the coefficient −1
3 of the third term in the 2-point function Eq. (1.6),

that ensures the vanishing of the trace, as opposed to−1
2 in the massless case Eq. (1.2),

which ensures that there are precisely two helicity states. In particular, the massless
field strength is not the limit of the massive field strength as m→ 0.

The discrepancy of coefficients is the origin of the DVZ observation due to van Dam
and Veltman [vDV70] and Zakharov [Z70], that in interacting models with s ≥ 2,
scattering amplitudes are discontinuous in the mass at m = 0, i.e., the scattering on
massless gravitons (say) is significantly different from the scattering on gravitons of a
very small mass. The DVZ discontinuity has been used to argue that, by measuring
the deflection of light in a gravitational field, gravitons must be exactly massless.

A second famous result about the higher-spin massless case is the Weinberg-Witten
theorem [WW80, L84, L08]. It states that for s ≥ 2, no point-localized stress-energy
tensor exists such that the Poincaré generators are moments of its zero-components:

Pσ
!

=

∫
x0=t

d3~xT0σ, Mστ
!

=

∫
x0=t

d3~x (xσT0τ − xτT0σ). (1.7)

The absence of a stress-energy tensor also obstructs the semiclassical coupling of
massless higher spin matter to gravity.

We are going to shed new light on these results, for arbitrary integer spin s.

The free massive Proca potential of spin s

AP
µ1...µs(x)

is a completely symmetric traceless and conserved tensor fields of rank s. Its positive
2-point function is a polynomial in the tensors πµν(p), with coefficients dictated by
symmetry and tracelessness, cf. Sect. 2. It is defined on the same Fock space as its
field strength. This potential has no massless limit, and its UV dimension is s+ 1.

We are going to define on the Fock space of the Proca potential new fields A
(r)
µ1...µr of

rank 0 ≤ r ≤ s with the following properties.

1. All A(r) have UV dimension dUV = 1 and are regular in the massless limit.

2. The potential AP can be decomposed into the fields A(r) (r ≤ s) in such a way
that all contributions of UV dimension > 1 and all terms that are singular as
m→ 0 are isolated as explicit inverse powers of m times derivatives of A(r) with
lower rank r < s (called “escort fields”).

3Albeit historically incorrect, we adopt the name “Proca field” also for higher spin.
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3. The massive symmetric tensor fieldsA(r) are neither traceless nor conserved, and
they are coupled among each other (with mass-dependent coefficients) through
their traces and divergences. In the massless limit, they become traceless and
conserved, and their field equations and 2-point functions decouple.

4. At m = 0, the escort A(0) is the canonical massless scalar field ϕ. The tensors
A(r>0) are potentials for the field strengths of helicity h = ±r [W95].

5. Conversely, the given massless field A(s) of any helicity h = ±s can be made
massive (“fattening”) by simply changing the dispersion relation p0 = ωm(~p)
without loosing positivity. The fattened field brings along with it all lower rank
fields A(r) by virtue of the coupling through the divergence, and the Proca field
AP can be restored from the massive field A(s). We give a surprisingly simple
formula involving only derivatives (Prop. 3.12).

6. We construct a stress-energy tensor, that is regular in the massless limit, such
that Eq. (1.7) are the generators of the Poincaré group. In the limit, we obtain
a stress-energy tensor that decouples into a direct sum of mutually commuting
stress-energy tensors T (r) for the helicity fields A(r).

By Item 6, the massless limit describes the exact decoupling of the lower helicities,
along with the splitting of the (m, s) Wigner representation into massless helicity
representations with h = ±r (r = 1, . . . , s) and h = 0:

Pσ =
⊕s

r=0
P (r)
σ , Mστ =

⊕s

r=0
M (r)
στ (1.8)

In particular, the number 2s + 1 of one-particle states at any fixed momentum is
preserved in the limit. In contrast, the “fattening” of the massless helicity s field
can increase the number of one-particle states, because its 2-point function is a semi-
definite quadratic form of rank 2 that becomes rank 2s + 1 under the deformation.
Having less null states, it describes more physical states.

These facts (for s = 2) yield an obvious explanation of the DVZ discontinuity [vDV70,
Z70]: The potential that continuously connects to the massless helicity h = ±2
potential is A(2). Coupling through the singular Proca potential or its analog in
the indefinite Feynman gauge ([vDV70, Eq. (28)]), one has contributions from all
r ≤ 2 at each positve mass. Rejecting at m = 0 the helicities |h| < 2 causes the
discontinuity. A coupling through A(2) at every mass would instead smoothly decrease
the contributions of the lower helicities.

The apparent “jump” of the coefficient from −1
3 in Eq. (1.6) (massive) to −1

2 in
Eq. (1.2) (massless) is by itself not a discontinuity, but a consequence of the reor-
ganization of the fields before the limit is taken. The coefficient −1

3 pertains to the

potential AP
µκ, while the coefficient −1

2 pertains to A
(2)
µκ .

The stated properties 1–6 of the massless potentials and stress-energy tensors are
clearly at variance with many No-Go theorems, including the Weinberg-Witten the-
orem. The explanation is that the new potentials A(r) have a weaker localization
property than assumed in [WW80]. Their 2-point functions involve a suitable tensor
Eµν(p) whose substitution for the singular (as m → 0) tensor πµν(p) or indefinite
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tensor ηµν (i) preserves positivity, (ii) does not affect the field strengths, and (iii) has
a regular limit m→ 0.

The usual No-Go theorems can be traced back to the fact that a tensor Eµν(p) with
the stated properties does not exist, if it is allowed to be a function of the momentum
only. Instead,

E(e, e′)µν(p) := ηµν −
pµeν
(pe)+

−
e′µpν

(pe′)+
+

(ee′)pµpν
(pe)+(pe′)+

(1.9)

are functions (actually distributions: 1/(pe)+ = 1/((pe+ i0)) stands for the distribu-
tion in p and e defined by the integral

∫
R+
du eip(x+ue) = i

p·e+i0e
ipx) of two four-vectors

e, e′. Thus, the fields whose 2-point functions are polynomials in Eµν depend on e,
and fail to be local because the dependence on p is not polynomial.

Every denominator (pe)+ can be achieved by integrating eipx along a ray x + R+e
(henceforth called “string”): In momentum space, the integration

X(x, e) ≡ (IeX)(x) :=

∫
R+

duX(x+ ue) (1.10)

produces precisely the denominators i((pe)+ i0)−1 in the creation part and −i((pe)−
i0)−1 in the annihilation part of a field X.4 Thus, the potentials with the properties
1–6 are “string-localized”, cf. the comments below. In fact, they are (iterated) string
integrals Eq. (1.10) over the point-localized field strengths.

It follows from Eq. (1.10) (and later generalizations involving iterations of the integral
operation Ie) that the Poincaré transformations of string-localized fields are

U(a,Λ)Aµ1...µr(x, e)U(a,Λ)∗ = Λν1µ1 · · ·ΛνrµrAν1...νr(a+ Λx,Λe), (1.11)

i.e., the direction of the string is transformed along with its apex x and the ten-
sor components of the field tensor. Unlike a fixed string direction, a transforming
direction does not violate covariance.

String-localization requires some comments. First, it is not a feature of the associated
particles, which are always the same massive spin s particles, but of the fields used to
couple them to other particles. (The only exception would be particles in the infinite-
spin representations [MSY06, LMR16], that are beyond the scope of the present
analysis.) As we have discussed before, we understand string-localized potentials
mainly as a device to set up renormalizable interaction terms that are equivalent to
but better behaved (see Example 1.3 below) than their non-renormalizable point-
localized counterparts.

It was already discussed in [L84] that the Weinberg-Witten theorem does not exclude
non-local densities. The string-localized stress-energy tensors realize this possibility.
More importantly, they may be used to couple higher spin matter to gravity.

Admitting string-localized potentials is not in conflict with the principle of causality,
which is as imperative in relativistic quantum field theory as Hilbert space positivity.

4Therefore, a 2-point function like Eq. (1.18) will rather involve E(−e, e′); we shall adjust this in

Sect. 3 by considering correlations between like mM
A(−e),A(e′).
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While their field strengths are point-localized, the string-localized potentials satisfy
causal commutation relations according to their localization: two such fields commute
whenever every point on the string x + R+e is spacelike to every point on the other
string x′ + R+e

′. If the strings are chosen spacelike (e2 = −1), then such pairs
of spacelike separated strings are abundant. Even with lightlike directions, there
are sufficiently many strings to construct scattering states in Haag-Ruelle theory,
provided asymptotic cluster properties can be established. Lightlike strings may
have advantages for some purposes [GMV17]. For the purpose of this work, we do
not need to specify e further.

The need to use quantities localized in spacelike cones, in order to connect massive
particle states with the vacuum in certain classes of interacting theories, was already
established by Buchholz and Fredenhagen [BF82] by an analysis of the localization
properties of charges within the general theory of local observables.

Example 1.3 [S16] The merit of using string-localized fields in perturbation theory
may be illustrated with QED: The coupling of the current to the indefinite massless
potential AK is replaced by a coupling jµAP

µ to the massive Proca potential AP. This
avoids introducing negative-norm states, but the interaction of UV dimension 5 is
non-renormalizable because of the UV dimension 2 of the Proca field. Now, the de-
composition (see Sect. 1.1) AP

µ(x) = Aµ(x, e) −m−1∂µa(x, e) into a string-localized
potential and its escort comes to bear: Aµ(e) has UV dimension 1 and is regular at
m = 0. The UV-divergent part of the interaction is “carried away” by the escort
field: −m−1 jµ∂µa(e) = −∂µ(m−1 jµa(e)) is a total derivative and may be discarded
from the interaction Lagrangean. The remaining string-localized (but equivalent to the
point-localized) interaction jµAµ(e) has UV dimension 4, and can be taken at m = 0.
Thus, the role of the escort fields is the controlled disposal of the UV divergence from
the outset, with the benefit of avoiding Krein space and compensating ghost fields.

The same strategy applies whenever the string-dependence of an interaction term is
a total derivative. The ongoing analysis of perturbation theory with string-localized
interactions [S16, MS17, M17] gives strong evidence that the resulting theory is order-
by-order renormalizable, and in the case of QED equivalent to the “usual” QED.

The scattering matrix can be made independent of the string direction e, provided
a suitable renormalization condition is satisfied. This condition may require the
presence of further “induced” interaction terms and/or fields of lower spin. E.g.,
in scalar massive QED, the cubic part of the string-local minimal coupling induces
also the quartic part [S16]. Massive vector bosons (like W and Z bosons) can be
coupled without spontaneous symmetry breaking. The string-independence of their
self-interaction can only be achieved with the help of a boson with properties like the
Higgs, including a quartic self-interaction [S16, MS17].

These observations are very analogous to the analysis by Scharf et al. [DS99, DS00,
S01, DGSV10] (in a gauge-theoretic point-localized setting) where the presence of a
Higgs boson is required by BRST invariance of causal perturbation theory with self-
interacting massive vector bosons. Indeed, the condition of e-independence can also
be formulated in a cohomological manner. Yet, the precise relation between gauge
invariance and string-independence remains to be explored. But beyond this analogy,
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it becomes clear that the role of the Higgs boson is not the generation of the mass,
but the preservation of the renormalizability and locality [S16, MS17].

A new renormalizable interaction in the string-localized setting could be the coupling
of matter to (massive) gravity through the string-localized potentials A(2), mentioned
above in the context of the DVZ discontinuity.

We list a few more features pertaining to the string-localized fields A(r).

7. In the massless limit, the escort A(0)(x, e)→ ϕ(x) becomes independent of e.

8. The string-localized potentials A(r) (1 ≤ r ≤ s) remain string-localized in the
massless limit, but their highest field strengths F (r) become point-localized,
and coincide with the field strengths obtained from indefinite massless poten-
tials. The potentials A(r) were previously constructed in [PY12] directly in the
massless Fock space without an approximation from m > 0.

9. Concerning Item 6 above, we proceed in two steps: we first separate from
a suitable point-localized stress-energy tensor “irrelevant terms” that do not
contribute to the Poincaré generators Eq. (1.7). Instead, they “carry away” all
the singularities when m→ 0:

Tρσ(x) = T reg
ρσ (x, e) + irrelevant terms,

The string-localized stress-energy tensor T reg is regular in the limit m→ 0. At
m = 0 it decouples as

T reg
ρσ (x, e)

∣∣
m=0

=
∑

r≤s
T (r)
ρσ (x, e) + irrelevant terms, (1.12)

where T (r) are quadratic in A(r) and mutually commute with each other. Their
moments generate the Poincaré transformations of the massless fields A(r) in
the helicity h = ±r Wigner representations.

The massless string-localized stress-energy tensors T (r) are displayed in Prop. 4.6.

It is well known that “the” stress-energy tensor is by no means unique. The require-
ments are that it is conserved so that the momenta Pσ in Eq. (1.7) are independent of
the time t; that it is symmetric so that also the Lorentz generators Mστ in Eq. (1.7)
are independent of t; and that the commutators of the generators with the fields
implement the given infinitesimal Poincaré transformations, where the commutation
relations of the fields are fixed by their 2-point functions.

For s ≥ 2 one can easily add local terms whose densities are spatial derivatives, and
hence do not change the generators. Thus, the local densities are ambiguous while
only the total quantities are meaningful – a familiar phenomenon in general relativity.

We give a brief discussion of earlier proposals in Sect. 4, before we present various
equivalent (always differing by irrelevant terms) stress-energy tensors with different
merits.
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1.1 Examples: s = 1 vs. s ≥ 2

The case s = 1 is very simple. The 2-point function Eq. (1.5) implies

mM
mAP

µ ,mA
P
ν = pµpν −m2ηµν , mM

Fµν ,mAP
κ = im(pµηνκ − pνηµκ). (1.13)

Hence, in the massless limit mAP
µ decouples from the field strength and becomes the

derivative of the scalar free field ϕ with 0M
∂µϕ,∂νϕ = pµpν .

The string-localized setting produces the massless scalar without derivative. More
importantly, it yields the decomposition Item 2 (underlying Example 1.3)

AP
µ(x) = Aµ(x, e)−m−1∂µa(x, e), (1.14)

where

Aµ(x, e) := Ie
(
Fµν

)
(x)eν ≡

∫
R+

duFµν(x+ ue)eν , (1.15)

a(x, e) := m · Ie
(
AP
ν

)
(x)eν , (1.16)

are string-localized fields, regular in the massless limit. Both Aµ and a satisfy the
Klein-Gordon equation with mass m and are coupled by

∂µAµ(x, e) = −ma(x, e). (1.17)

One may as well use Eq. (1.17) as the definition of a(x, e) and derive Eq. (1.16) as a
consequence.

In the massless limit, the field equation Eq. (1.17) decouples a from Aµ. The former
converges to the massless scalar, and the latter converges to a string-localized massless
potential of the Maxwell field strength Fµν . In terms of 2-point functions, these claims
are explicitly seen by computing5

mM
Aµ(−e),Aν(e′) = −ηµν +

pµeν
(pe)+

+
e′µpν

(pe′)+
− (ee′)pµpν

(pe)+(pe′)+
≡ −E(e, e′)µν(p). (1.18)

Now, Eq. (1.17) gives

mM
a(−e),Aν(e′) = im

( e′ν
(pe′)+

− (ee′)pν
(pe)+(pe′)+

)
, (1.19)

mM
a(−e),a(e′) = 1−m2 (ee′)

(pe)+(pe′)+
. (1.20)

At m = 0, the 2-point function of a is independent of e and e′, hence ϕ = a(x, e)|m=0

is independent of e. Its one-particle state is the remnant of the massive particle state
with transverse angular momentum.

The taming of the UV behaviour, underlying the application in Example 1.3, is seen
from Eq. (1.18): it occurs because the momentum factors in the denominator balance
those in the numerator [MO16]. The same persists at every spin s.

5Because the fields are distributions in x (or p) and in e, we have to admit different string directions
for the two field entries, and the choice “−e” is mainly a matter of convenience (to become useful for
higher spin).
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The decoupling in the case s = 2 is more delicate, in that it requires a second step.
We define the symmetric string-localized potential as the two-fold string integral over
the field strength

Aµν(x, e) := (I2eF[µκ][νλ])(x)eκeλ, (1.21)

and its escort fields by

a(1)µ (x, e) := −m−1∂νAµν(x, e),

a(0)(x, e) := −m−1∂µa(1)µ (x, e). (1.22)

They are regular atm = 0 because ∂νF[µκ][νλ] = −m2FP
[µκ]λ (the partial field strength),

and ∂µFP
[µκ]λ = −m2AP

κλ. From the 2-point function

mM
Aµν(−e),Aκλ(e′) =

1

2

[
E(e, e′)µκE(e, e′)νλ + (κ↔ λ)

]
− 1

3
E(e, e)µνE(e′, e′)κλ, (1.23)

all other 2-point functions can be computed by descending with Eq. (1.22).

It turns out that the mixed correlations mM
A,a(1) and mM

a(1),a(0) are O(m), hence the
even and odd rank fields decouple in the massless limit. But the correlation among
the even rank fields are O(1) and become at m = 0

0M
a(0)(−e),Aµν(e′) = −1

3
E(e′, e′)µν(p) (1.24)

0M
a(0)(−e),a(0)(e′) =

2

3
. (1.25)

In particular, Aµν(x, e) and a(0)(x, e) do not decouple in the massless limit. They are
decoupled by defining

A(2)
µν (e) := Aµν(e) +

1

2
Eµν(e, e)a(0)(e), (1.26)

where the operator

E(e, e)µν = ηµν +
(
eν∂µ + eµ∂ν

)
Ie + e2∂µ∂νI

2
e (1.27)

acts by multiplication with E(e, e)µν(p) and E(e, e)µν(−p) = E(−e,−e)µν(p) on the
creation and annihilation parts, respectively. With this redefinition, the decoupling
is exact at m = 0.

It turns out that mM
A

(2)
µν (−e),A

(2)
κλ (e

′) is the same as Eq. (1.23) but with the coefficient
−1

2 rather than −1
3 for the third term. In particular, because the derivative terms

O(p/(pe)) do not contribute to the field strength, A(2) becomes at m = 0 a string-
localized potential for the massless field strength F (2) of helicity h = ±2. Unlike the
point-localized Krein potential AK with 2-point function Eq. (1.2), A(2) is positive,

traceless, and conserved, and it satisfies the axial gauge condition eµA
(2)
µν = 0.

The decomposition, referred to in Item 2 above, is

AP
µν(x) = Aµν(x, e)−m−1

(
∂µa

(1)
ν + ∂νa

(1)
µ

)
(x, e) +m−2∂µ∂νa

(0)(x, e), (1.28)
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where in turn, Aµν is expressed in terms of A
(2)
µν and a(0), and a(1) =:

√
1/2 ·A(1) and

a(0) =:
√

2/3 ·A(0). The normalizations are such that in the massless limit A(0)(x, e)

becomes the massless scalar field, and A
(1)
ν becomes the string-localized potential for

the Maxwell field, as above.

The pattern persists for higher spin: the decoupling fields arise by linear combinations
with powers of E(e, e) acting on the lower escort fields. We systematize these results
for general integer spin in Sect. 3.

It may be interesting to notice that one can average the s = 1 potential A(x, e) in e
over the spacelike sphere with e0 = 0. The resulting field is, at m = 0, the well-known
Maxwell potential in the Coulomb gauge (AC

0 = 0) Eq. (1.1).

The same average of the string-localized potentialA
(2)
µν (x, e) involves divergent quadratic

moments of e/(pe)+. However, at m = 0, only mixed correlations of orthogonal com-
ponents contribute, which formally average to zero, and one gets the Coulomb gauge
potential (AC

0µ = 0) also for s = 2.

2 Preliminaries on point-localized fields

2.1 Massive case

The massive Proca field AP
µ1...µs of spin s is a completely symmetric traceless and

conserved tensor field satisfying the Klein-Gordon equation:

ηµiµjAP
µ1...µs = 0, ∂µjAP

µ1...µs = 0, (� +m2)AP
µ1...µs = 0. (2.1)

with 2-point function

mM
AP
µ1...µs

,AP
ν1...νs =

∑
2n≤s

b̃sn (πµµ)n(πνν)n(πµν)s−2n. (2.2)

The sum extends over all inequivalent attributions of the available indices of the given
form, namely either πµiµj , πνiνj , or πµiνj , to the schematically displayed factors.

The coefficients b̃sn = (−1)s n!
s!( 1

2
−s)n

6 ensure the vanishing of the traces, while the fact

that πµν(p)pν = 0 ensures the vanishing of the divergences.

The same formula can also be derived from the (m, s) Wigner representation:

AP
µ1...µs =

∫
dµm(p)

[
eipxvaµ1...µs(p)a

∗
a(p) + h.c.

]
(2.3)

where the tensors vaµ1...µs(p) intertwine the (m, s) Wigner representation of the Lorentz
group with the symmetric traceless tensor representation [W95], and the spin indices
a are summed over. The coefficients b̃sn in Eq. (2.2) are due to the projection operator
(involved in the intertwiners vaµ1...µs) onto the spin s representation in the s-fold tensor
product of vector representations of the little group SO(3) (= traceless symmetric
tensors in (C3)⊗s [G78, Eq. (1.13)]).

6The alternating overall sign is due to our sign convention of the metric.
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To keep track of the combinatorics for general s, it will be advantageous to trade the
indices for a “polarization vector” f ∈ R4 and write

X(f) ≡ Xµ1...µrf
µ1 . . . fµr ,

when X is a symmetric rank r tensor. Then the divergence (∂X)µ2...µr := ∂µ1Xµ1...µr

and the trace (TrX)µ3...µr := ηµ1µ2Xµ1...µr are given by

r · (∂X)(f) = (∂x · ∂fX(f)), r(r − 1) · (TrX)(f) = �fX(f).

In this notation, the Proca correlation in momentum space is

mM
AP(f),AP(f ′) =

∑
2n≤s

bsn (f tπf)n(f ′tπf ′)n(f tπf ′)s−2n

whose coefficients differ from b̃sn by a counting factor of equivalent terms:

bsn =
[( s

2n

)
(2n− 1)!!

]2
(s− 2n)! · b̃sn = (−1)s

1

4nn!

s!

(s− 2n)!

1

(12 − s)n
.

In D dimensions (where Tr (π) = D − 1, little group SO(D − 1)), the Pochhammer
symbol (12 − s)n, arising from the projection onto traceless symmetric tensors in
(CD−3)⊗s, would be replaced by (5−D2 − s)n.

2.2 Massless case

For the massless case, point-localized covariant potentials with a positive 2-point
function do not exist. From the pair of Wigner representations (m = 0, h = ±s)
one can construct point-localized covariant field strengths F

(s)
[µ1ν1]...[µsνs]

whose 2-point
function are the curls of the indefinite 2-point function

0M
AK
µ1...µs

,AK
ν1...νs =

∑
2n≤s

c̃sn (ηµµ)n(ηνν)n(ηµν)s−2n, (2.4)

(notation as in Eq. (2.2)) or equivalently,

0M
AK(f),AK(f ′) =

∑
2n≤s

csn (f tηf)n(f ′tηf ′)n(f tηf ′)s−2n.

The coefficients are

csn =
[( s

2n

)
(2n− 1)!!

]2
(s− 2n)! · c̃sn = (−1)s

1

4nn!

s!

(s− 2n)!

1

(1− s)n
.

In D dimensions (little group E(D− 2) = SO(D− 2)nRD−2 with RD−2 represented
trivially), the Pochhammer symbol (1−s)n, arising from the projection onto traceless
symmetric tensors in (CD−2)⊗s, would be (6−D2 − s)n.

3 String-localized fields: general integer spin s

Throughout this section the spin s is fixed, and does not always appear explicitly in
the notation; i.e., fields like a(r) or numbers like brr

′
nn′ will depend also on s.
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3.1 Escort fields

Let AP
µ1...µs and F[µ1ν1]...[µsνs] be the Proca potential and its field strength. Let e be

a (spacelike) unit vector. We introduce the symmetric string-localized potential

a(s)µ1...µs(x, e) := (IseF[µ1ν1]...[µsνs])(x)eν1 . . . eνs (3.1)

and its escort fields for 0 ≤ r < s

a(r)µ1...µr(x, e) := −m−1 · ∂µa(r+1)
µ1...µrµ(x, e). (3.2)

Remark 3.1 a
(s)
µ1...µs coincides with the string-localized field denoted Aµ1...µs in [S15,

S16, MO16]. a(r) (r < s) are related to the escort fields φ(r) introduced there by
derivatives of lower φ(q) (q < r) and an overall power of the mass:

a(r)µ1...µs(x, e) = ms−r
∑

q≤r
∂µ . . . ∂µφ

(q)
µ...µ(x, e)

where for each q ≤ r the sum extends over all
(
r
q

)
inequivalent permutations of the

indices. This can be seen from [MO16, Eq. (4)] by taking divergences and using the
Klein-Gordon equation. Lemma 3.3 below justifies our departure from the previous
definition.

The definition Eq. (3.1) involves the operations curl, contraction with e and string

integration on each Lorentz index of AP
µ1...µs . This means that a

(s)
µ1...µs arises from

Eq. (2.3) by multiplication of the intertwiner vaν1...νs with the matrix

Jµ
ν(p, e) = δνµ −

pµe
ν

(pe)+
, (3.3)

in each Lorentz index. It is obviously

Jµ
ν(p, e)pν = 0, eµJµ

ν(p, e) = 0. (3.4)

Corollary 3.2 The “axial gauge” condition [PY12] eµa
(r)
µµ2...µr(e) = 0 holds.

Proof: Obvious from the second of Eq. (3.4) and the definition Eq. (3.2). �

The conservation of AP means that pµivaµ1...µs(p) = 0 in Eq. (2.3). Because ipµJµ
ν =

ipν − im2 eν

(pe)+
, it follows for r ≤ s

a(r)µ1...µr(x, e) =

∫
dµm(p)

[
eipx

r∏
k=1

J νk
µk

(p, e)
s∏

k=r+1

imeνk

(pe)+
vaν1...νs(p)a

∗
a(p) + h.c.

]
(3.5)

Lemma 3.3 The fields a
(r)
µ1...µr(x, e) (0 ≤ r ≤ s) are regular in the limit m→ 0.
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Proof: The 2-point functions of a
(r)
µ1...µr arise from Eq. (2.2) by multiplying with

the matrices J and contracting with im e
(pe)+

according to Eq. (3.5). By the first

of Eq. (3.4), every matrix J kills one singular factor pµpν/m
2 of Eq. (2.2), and the

powers of m coming with the contractions balance the remaining singularity. �

We have the (preliminary) decomposition of the point-localized field AP
µ1...µs into a(s)

and its escort fields:

Proposition 3.4 The massive point-localized potential of spin s can be written as

AP
µ1...µs(x) =

∏s

k=1

(
δνkµk +m−2∂µk∂

νk
)
a(s)ν1...νs(x, e). (3.6)

It decomposes into regular string-localized escort fields with inverse mass coefficients

AP
µ1...µs(x) =

∑
r≤s

(−m−1)s−r∂µ . . . ∂µa(r)µ...µ(x, e) (3.7)

where for each r ≤ s the sum extends over all
(
s
r

)
inequivalent permutations of the

indices.

Proof: In momentum space, the differential operator in Eq. (3.6) is π⊗s. The identity
follows from Eq. (3.5) (with r = s), because πJ = π and π⊗sva = va since AP is con-
served. The derivatives m−2∂µ∂

ν involved in Eq. (3.6) turn a(r) into −m−1∂µa(r−1)
by Eq. (3.2). This gives Eq. (3.7). �

The string-localized fields a(r) are dynamically coupled among each other. We have

Proposition 3.5 The regular escort fields a
(r)
µ1...µr are coupled through the field equa-

tions

∂µ1a(r)µ1...µr = −ma(r−1)µ2...µr , ηµ1µ2a(r)µ1...µr = −a(r−2)µ3...µr . (3.8)

By the first equation, every escort a(r) still “contains” all the lower escorts a(r
′)

(r′ < r). The divergence will decouple in the massless limit from the lower escorts,
while the trace doesn’t. Subtracting the traces would instead bring back the coupling
through the divergences. This is the reason why the decomposition in Prop. 3.4 is
only preliminary.

Proof: The first equation is just the definition Eq. (3.2). The second follows from

(J tηJ)ν1ν2 = ην1ν2 − pν1eν2 + eν1pν2

(pe)+
+m2 e

ν1eν2

(pe)2+

together with the fact that AP is traceless and conserved, hence pν and ην1ν2 act
trivially in Eq. (3.5). �

We display the 2-point function mM
a(s)(−e),a(s)(e′). Every factor π in Eq. (2.2) is hit

by two of the matrices J(p, e′) or J(p,−e) = J(p, e). We therefore define

Eµν(e1, e2)(p) := (J(p, e1)π(p)J(p, e2)
t)µν = (J(p, e1)ηJ(p, e2)

t)µν (3.9)
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which is precisely the distribution defined in Eq. (1.9), and abbreviate (for f, f ′ ∈ R4)

Eff ≡ f tE(e, e)f, Eff ′ ≡ f tE(e, e′)f ′, Ef ′f ′ ≡ f ′tE(e′, e′)f ′.

Then we have from Eq. (2.2) and Eq. (3.5) with r = s:

mM
a(s)(−e)(f),a(s)(e′)(f ′) =

∑
n
bsn (Eff )n(Ef ′f ′)

n(Eff ′)
s−2n. (3.10)

3.2 Decoupling in the massless limit

The massless results of this section are equivalent to results obtained recently by
Plaschke and Yngvason [PY12, Sect. 4A]. While these authors consider Wigner in-
tertwiners directly at m = 0, we exhibit smooth families of fields A(r)|m≥0.

We turn to the task of a complete decoupling at m = 0. We do this by a study of the
2-point functions. In a positive metric, decoupling the 2-point functions implies the
decoupling of the field equations.

The 2-point functions of the massive escort fields a(r) do not decouple. In order to
compute them efficiently, we cast Eq. (3.5) into the form of a “generating functional”:∑

r≤s

(
s

r

)
a(r)(e)(f) = Z(f, e) := AP(J tef +meIe).

Here Ie is the string integration, understood in this formula as an operation acting
on the field, and Je acts by multiplication with Jµ

ν(p, e) and its complex conjugate
on the creation resp. annihilation part of the field. Then

mM
Z(f,−e),Z(f ′,e′) =

∑
r,r′

(
s

r

)(
s

r′

)
· mMa(r)(−e)(f)a(r′)(e′)(f ′).

Given the l.h.s. as a function of f and f ′, the correlations between a(r) and a(r
′) can

be read off by selecting the terms of the appropriate homogeneities in f and in f ′.

In order to compute the l.h.s., we have to contract each factor πµµ in Eq. (2.2) twice
with (J(p, e)tf − ime/(pe)+)µ, each factor πνν twice with (J(p, e′)tf + ime′/(pe′)+)ν ,
and each factor πµν with both vectors. Because of the first of Eq. (3.4) and Eq. (3.9),
and because (me/(pe)+)tπ(me/(pe)+) = −1 + O(m2), all these contractions are of
the form E + 1 +O(m) resp. E − 1 +O(m), and one arrives at

mM
Z(f,−e),Z(f ′,e′) =

∑
n≤s

bsn (Eff + 1)n(Ef ′f ′ + 1)n(Eff ′ − 1)s−2n +O(m).

We get the massless 2-point functions:

Proposition 3.6 At m = 0, one has

0M
a(r)(−e)(f),a(r′)(e′)(f ′) =

∑
r−2n=r′−2n′

brr
′

nn′(Eff )n(Ef ′f ′)
n′(Eff ′)

r−2n (3.11)

with (
s

r

)(
s

r′

)
· brr′nn′ =

∑
m

(
m

n

)(
m

n′

)(
s− 2m

r − 2n

)
· bsm. (3.12)

In particular, 0M
a(r)(−e),a(r′)(e′) = 0 if r − r′ is odd.



CBPF-NF-004/17 16

Proof: Eq. (3.12) are the coefficients of the respective terms of homogeneity r in f
and r′ in f ′. �

One could also have computed Eq. (3.11) by descending from Eq. (3.10) with Eq. (3.8)
at m > 0, and then taking m→ 0.

We now set out to “diagonalize” the mixed 2-point functions Eq. (3.11) with the help
of the operator E(e, e)µν given in Eq. (1.27). We write Eff ≡ f tE(e, e)f .

Proposition 3.7 The combinations

A(r)(f) =
∑

2k≤r
αrk · (Eff )ka(r−2k)(f) (3.13)

are traceless at m = 0 if and only if

αrk =
(r − 2k + 2)(r − 2k + 1)

4k(r − k)
αrk−1 ⇔

αrk
αr0

= (−1)r−k crk

with crk given in Sect. 3.2.

Proof: The recursion follows by applying �f to Eq. (3.13) and noticing that Tr (E) =

2 + O(m2), Tr (a(r)) = −a(r−2), and Eν
µa

(r)
µµ2...µr = a

(r)
νµ2...µr + O(m) because ∂a(r) =

O(m) and ea(r) = 0 (Eq. (3.8) and Cor. 3.2). The recursion is solved by αrk =
(−1)r−kcrk · αr0, where αr0 will be used later for normalization. �

Because the definition Eq. (3.13) is upper triangular in r, the inverse formula is of the
same form. We did, however, not succeed to compute its coefficients in closed form.

The operators Eff and Ef ′f ′ involved in the field definitions produce the factors
denoted with the same symbols (cf. Eq. (3.10)) in the 2-point functions. Therefore,
the correlations among A(r)(f)|m=0 are of the same general form as Eq. (3.11) with
different coefficients. Because A(r) are traceless, the same must be true for their
correlations. This implies their decoupling:

Proposition 3.8

0M
A(r)(e)(f),A(r′)(e′)(f ′) = δrr′Nr ·

∑
2n≤r

crn (Eff )n(Ef ′f ′)
n(Eff ′)

r−2n (3.14)

with the same coefficients crn = (−1)r 1
4nn!

r!
(r−2n)!

1
(1−r)n as in Sect. 3.2. The proper

normalization Nr = 1 can be achieved by adjusting αr0.

Proof: We make a general ansatz with coefficients crr
′

nn′ with r − 2n = r′ − 2n′. The
vanishing of �f and of �f ′ gives conflicting recursions for crr

′
nn′ unless r = r′. If r = r′,

the recursion implies the displayed coefficients. �

While Eq. (3.13) are defined for m ≥ 0, the decoupling is exact only at m = 0.
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Corollary 3.9 The massless symmetric tensor potentials A(r)(x, e) are traceless (by
construction) and conserved. They satisfy in addition the axial gauge condition

eµA(r)
µµ2...µr(x, e) = 0.

They are string-localized potentials for the field strengths associated with the Wigner
representations of helicity h = ±r [W95]. They coincide with the potentials given in
[PY12, Sect. 4A].

Proof: When the divergence is taken, the derivative may be contracted with an index
of E or with an index of a(r−2k). The former contributions are Ep = O(m2), the latter
are O(m) by Eq. (3.8), hence the divergence vanishes at m = 0. The axial gauge is
a consequence of Cor. 3.2 and the fact that eµE(e, e)µν = 0. The last statements are
immediate because Eµν differs from ηµν by derivative terms that do not contribute
to the field strengths; and the coefficients are the same as in Eq. (2.4). �

It remains to relate the normalization Nr in Eq. (3.14) (which should be = 1 in the
standard normalization Sect. 3.2) to (αr0)

2 from Eq. (3.13). Because it is the coefficient
of the purely mixed term (Eff ′)

r in Eq. (3.11), it is easy to see from Eq. (3.13) and

Eq. (3.14) that Nrc
r
0 = (αr0)

2brr00, with brr00 =
(
s
r

)−1∑
2m≤s−r

1
4mm!

(r−s)2m
( 1
2
−s)m

given by

Eq. (3.12). So the proper normalization is fixed by

(αr0)
2 = (−1)r(brr00)

−1 =

(
s

r

)
Γ(12 + s)Γ(1 + r)

Γ(12 + r+s
2 )Γ(1 + r+s

2 )
. (3.15)

Remark 3.10 (i) The decoupled massless fields A(r) are independent of the spin
s ≥ r of the massive field in whose decomposition they emerge in the massless limit.

(ii) The axial gauge condition in Cor. 3.9 ensures the reduction of the degrees of
freedom as compared to the massive representation of spin r (relevant little group
SO(D − 2) = E(D − 2)/RD−2 vs. SO(D − 1) in D dimensions).

(iii) For the 2-point functions of the components A
(r)
µ1...µr , the factors Eff , Eff ′ etc. in

Eq. (3.14) have to be replaced by corresponding components of the tensors E(e, e)(p):

0M
A

(r)
µ1...µr

(e),A
(r)
ν1...νr

(e′) =
∑

c̃rn (E(e, e)µµ)n(E(e′, e′)νν)n(E(e, e′)µν)r−2n

(notation as in Eq. (2.2)).

(iv) Taking the total curl, kills all factors pµ in all E tensors. Therefore the 2-

point functions of the highest field strengths F
(r)
[µ1ν1]...[µrνr]

are the same as if they

were derived from point-localized potentials AK(r) with indefinite 2-point functions
Eq. (2.4). The Krein potentials are neither traceless nor conserved.

(v) In particular, the field strengths are independent of e, hence they are point-localized
fields, and (by the same argument as the one leading to Eq. (3.10))

A(r)
µ1...µr(x, e) = (IreF

(r)
[µ1ν1]...[µrνr]

)(x)eν1 . . . eνr . (3.16)
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3.3 “Fattening”

The 2-point function Eq. (3.14) with r = s is exact also for m > 0.7

Thus, if one takes the massless string-localized potential A(s)|m=0 with 2-point func-
tion Eq. (3.14) (with r = s) as the starting point, one can get the mass by simply
taking the arguments of the functions Eµν(p) on the mass-shell. The previous analy-
sis, where we have derived this massive 2-point function from a positive theory, shows
that this deformation preserves positivity. But it decreases the number of null states
of the 2-point function, viewed as a quadratic form, because the massive potential is
not conserved, and hence it increases the number of particle states.

Remark 3.11 The fattening allows to continuously “turn on the mass” in interac-
tions with vector or tensor bosons without appealing to the Higgs mechanism and the
“eating of the Goldstone boson”. See the comments in Sect. 1.

One can also get back the Proca potential AP(x) as derivatives of the fattened po-
tential A(s)(x, e):

Proposition 3.12 The point-localized Proca potential can be restored from the string-
localized massive helicity h = ±s field A(s)|m>0 by “applying the Proca 2-point func-
tion Eq. (2.2)”, regarded as a differential operator (πµν = ηµν +m−2∂µ∂ν):

AP
µ1...µs(x) = (−1)s · mMAP

µ1...µs
,APν1...νs ·A(s)

ν1...νs |m(x, e)

Proof: We multiply the 2-point function in the form Eq. (2.2) on A(s) in the form
Eq. (3.13). In the first step, we notice that every factor Eνν contained the field8

annihilates the 2-point function because the latter is conserved and traceless. Thus,
we may replace A(s) by its leading term a(s) (k = 0 in Eq. (3.13), αs0 = 1). In the
second step, we notice that every factor πνν in the 2-point function annihilates a(s)

by virtue of Eq. (3.8). Thus we may replace the 2-point function by its leading term
n = 0 in Eq. (2.2), which is (−π)⊗s. The claim then follows from Eq. (3.6). �

Proposition 3.13 Conversely, we have the formulae

a(s)µ1...µs(x, e) = (−1)s · mMa
(s)
µ1...µs

(−e),a(s)ν1...νs (e) ·AP
ν1...νs(x) (3.17)

for m > 0, and (after taking the limit m→ 0 of the regular field a(s))

A(s)
µ1...µs(x, e) = (−1)s · 0MA

(s)
µ1...µs

(e),A(s)ν1...νs (e) · a(s)ν1...νs(x, e) (3.18)

for m = 0, to restore the massless helicity field A(s) from the Proca field. In po-
sition space, the 2-point functions Eq. (3.10), Eq. (3.14) are understood as integro-
differential operators, cf. Eq. (1.27).

7This is not true for the massive fields A(r) with r < s. Due to their coupling to fields with r′ > r,
their 2-point functions are not just polynomials in Eµν(p), cf. Eq. (3.11).

8We suppress sub-indices like Eνiνj in this and all similar arguments to follow.
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Proof: For Eq. (3.17), we notice that every factor Eνν annihilates AP (traceless and
conserved), hence only n = 0 in the 2-point function contributes, and the factors Eµ

ν

act on AP like δνµ −
pµeν

(pe)+
= Jµ

ν . This gives a(s) by Eq. (3.5). For Eq. (3.18), we

notice that at m = 0, Eµ
ν acts on a(s) like δνµ by the first of Eq. (3.8) and Cor. 3.2,

and Eνν acts like ηνν . Thus, the second of Eq. (3.8) implies the claim. �

4 Stress-energy tensor

4.1 The point-localized stress-energy tensor for m > 0

We refer to App. A for some comments on stress-energy tensors and Lagrangeans for
free fields of higher spin.

For our purposes here, it suffices to “read back” a suitable stress-energy tensor for
the Proca field AP

µ1...µs from a simple form of the Poincaré generators.

Proposition 4.1 The generators of the Poincaré transformations of the Proca field
can be written as

Pσ = (−1)s
∫
d3~x
[
− 1

4
AP
µ1...µs

↔
∂σ
↔
∂0 A

Pµ1...µs
]
, (4.1)

Mστ = (−1)s
∫
d3~x
[
− 1

4

(
xσ ·AP

µ×
↔
∂0
↔
∂τ A

Pµ× − (σ ↔ τ)
)
− sAP

σ×
↔
∂0 A

P
τ
×
]
, (4.2)

where X×Y
× stands for the contraction in s− 1 indices µ2 . . . µs.

Here and everywhere below, normal ordering is understood.

Before we give the proof, we state the corollary:

Corollary 4.2 The generators Eq. (4.1) and Eq. (4.2) can be obtained from the
“reduced stress-energy tensor”

T red
ρσ := (−1)s

[
− 1

4
AP
µ×
↔
∂ρ
↔
∂σ A

Pµ× − s

2
∂µ
(
AP
ρ×
↔
∂σ A

P
µ
× + (ρ↔ σ)

)]
. (4.3)

See App. A for how T red relates to more familiar stress-energy tensors.

Eq. (4.1) and the first term in Eq. (4.3) already appear in [F39]. The second term
in Eq. (4.3) does not contribute to the momenta, but it produces the last term in
Eq. (4.2), which is necessary in order to get the correct infinitesimal boosts. This will
become apparent in the proof of Prop. 4.1. The first term in Eq. (4.3) and the two
parts of the derivative term are separately conserved w.r.t. both indices ρ and σ by
virtue of Lemma B.1(i) resp. (ii).

Proof of Cor. 4.2: We have to do the integrals Eq. (1.7) at fixed x0 = t. The first
part of Eq. (4.3) obviously gives Eq. (4.1) and the first terms of Eq. (4.2). The two
pieces of the second part do not contribute to Pσ, and they give rise to the last term
of Eq. (4.2) by Lemma B.1(i) and (ii), respectively. �
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Proof of Prop. 4.1: The argument for Pσ can essentially be found in [F39], except
that the commutator Eq. (4.4) has been guessed not quite correct [F39, Eq. (4.2)].
We display the argument here because we shall use many variants of it below. See
also footnote 8.

The 2-point function Eq. (2.2) fixes the commutation relation

[AP
µ1...µs(x), AP

ν1...νs(y)] = (−1)sDµ1...µs,ν1...νs∆m(x− y) (4.4)

where (−1)sDµ1...µs,ν1...νs = mM
AP
µ1...µs

,AP
ν1...νs is the 2-point function regarded as

a differential operator (πµν = ηµν + m−2∂µ∂ν) acting on the commutator function
∆m(x− y) of the scalar free field. The commutator of Pσ with AP

ν1...νs is

[Pσ, A
P
ν1...νs(y)] = −1

2

∫
d3~xDµ1...µs,ν1...νs∆m(x− y)

↔
∂0
↔
∂σ A

Pµ1...µs(x).

The derivatives ∂µ appearing in pieces of the differential operator D can be partially

integrated using Lemma B.1(i), with Θρσ of the form ∂µ(D′...∆m

↔
∂ρ
↔
∂σ A

Pµ...), sup-
pressing further indices. After partial integration, the derivatives act on the field
APµ...(x) where they vanish. Thus, one may replace all operators of the form πµν and
πµµ in D by ηµν and ηµµ. Because the latter also kill the field APµ...µ(x), only the
contribution n = 0 of the 2-point function Eq. (2.2) (that specifies the operator D)
survives, and D may be replaced by the “identity operator” (ηµν)⊗s. At this point,
the integral can be immediately performed: because Eq. (4.1) integrated at x0 = t is
independent of t, one may choose x0 = y0, and use the equal-time properties of the
scalar commutator function: ∆m(x)|x0=0 = 0 and ∂0∆m(x)|x0=0 = −iδ(~x). We get
the desired result [Pσ, A

P
ν...ν(y)] = −i∂σAP

ν...ν(y).

The argument for the Lorentz generators is more involved. The commutator of the
first terms in Eq. (4.2) with AP

ν1...νs is

−1

2

∫
d3~x xσDµ1...µs,ν1...νs∆m(x− y)

↔
∂0
↔
∂τ A

Pµ1...µs(x)− (σ ↔ τ).

All terms involving ∂µ∂µ, either from πµµ or from πµνπµν within D, vanish because∫
d3~x ∂µ

[
D′′...∆m

↔
∂0
↔
∂σ A

P
τ
µ...
]

= 0 (using Lemma B.1(i) twice). Thus, the only contri-
butions are due to (ηµν)⊗s and s terms (ηµν)⊗s−1m−2∂µ∂ν . The former give rise, if
evaluated at x0 = y0, to the infinitesimal transformation of the point x:

−1

2

∫
d3~x xσ∆m(x− y)

↔
∂0
↔
∂τ A

P
ν1...νs = −i(xσ∂τ − xτ∂σ)AP

ν1...νs .

The latter give rise, again by Lemma B.1(i), to the undesired term

− 1

2m2

∑s

i=1

∫
d3~x ∂νi∆m

↔
∂0
↔
∂σ A

P
τν1...ν̂i...νs

− (σ ↔ τ) =
i

m2

∑s

i=1
∂νiF

P
[στ ]ν1...ν̂i...νs

.

On the other hand, the commutator of the last term in Eq. (4.2) with AP
ν1...νs is

−s
∫
d3~xDσµ2...µs,ν1...νs∆m(x− y)

↔
∂0 A

Pµ2...µs
τ (x)− (σ ↔ τ).
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Again, all terms involving ∂µ vanish by Lemma B.1(i), and terms involving ηµµ vanish
because AP is traceless. Thus, only the terms πσν(ηµν)⊗s−1 survive:

= −
∑s

i=1

∫
d3~x

(
ησνi +m−2∂σ∂νi

)
∆m(x− y)

↔
∂0 A

P
τν1...ν̂i...νs(x)− (σ ↔ τ).

The contribution from ησνi gives the infinitesimal transformation of the tensor indices

−i
∑s

i=1

(
ησνi

↔
∂0 A

P
τν1...ν̂i...νs − ητνi

↔
∂0 A

P
σν1...ν̂i...νs

)
.

The remaining contribution from m−2∂σ∂νi is

− 1

m2

∑s

i=1

∫
d3~x ∂σ∂νi∆m(x− y)

↔
∂0 A

P
τν1...ν̂i...νs(x)− (σ ↔ τ)

and cancels with the previous undesired term thanks to the identity∫
d3~x

[
X
↔
∂0
↔
∂σ Y + 2∂σX

↔
∂0 Y

]
=

∫
d3~x ∂σ

[
X
↔
∂0 Y

]
= 0 (4.5)

(once more by Lemma B.1(i), writing ∂σ = ∂µηµσ). �

4.2 The string-localized stress-energy tensors for m = 0

We are going to separate “irrelevant contributions” from the reduced stress-energy
tensor, that do not contribute to the generators. It is, however, more practical,
to perform the corresponding partial integrations inside the generators Eq. (4.1),
Eq. (4.2), and read back a resulting stress-energy tensor, as we have done before.
In the first step, the partial integrations remove all terms that are singular in the
massless limit.

We insert the preliminary decomposition Eq. (3.7) of the point-localized potential
AP in terms of derivatives of string-localized fields a(r) into the Poincaré generators
Eq. (4.1) and Eq. (4.2), and partially integrate all the derivatives of the decomposition.
The result is

Proposition 4.3 Expressed in terms of string-localized fields a(r) (r ≤ s), the Poincaré
generators are

Pσ =
∑s

r=0

(
s

r

)
(−1)r

∫
d3~x

[
− 1

4
a(r)µ1...µr(x, e)

↔
∂0
↔
∂σ a

(r)µ1...µr(x, e′)
]
,

Mστ =
∑s

r=0

(
s

r

)
(−1)r

∫
d3~x[

− 1

4
xσ a

(r)
µ×(x, e)

↔
∂0
↔
∂τ a

(r)µ×(x, e′)− r

2
a
(r)
σ×(x, e)

↔
∂0 a

(r)
τ
×(x, e′)

]
− (σ ↔ τ)

for any pair e, e′, and at all values of the mass m.
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Remark 4.4 The integrands must be understood as distributions in e and e′ sepa-
rately, i.e., they should be averaged with test functions h(e, e′) (of total weight one,
in order to preserve the generators, which are independent of e, e′). The reason is as
follows.

All quadratic expressions are understood as Wick products. Wick products of string-
localized fields at coinciding x and at coinciding e are well-defined as distributions
in x and e [M17]. For point-localized fields, the “time t = 0 integral” of :φ(x)2:
(i.e., the extension of this distribution to the singular “test function” δ(x0)1R3) is not
defined as an operator: only its matrix elements in a dense set of states are defined.
For string-localized fields with spacelike e, the situation is worse: not even matrix
elements of the integral over :φ(x, e)2: can be defined, because they produce conflicting
denominators 1/(pe)−(pe)+. Therefore, even if e, e′ are arbitrary, one must not put
e′ = e and regard the integrand as a distribution in e.

With lightlike e, the fields are functions of e rather than distributions [MO16, foot-
note 3], and the problem is absent.

Proof of Prop. 4.3: We insert the expansion Eq. (3.7) of AP(x) in terms of derivatives
of a(r)(e) resp. a(r

′)(e′) into Eq. (4.1).

It is routine work to partially integrate all the derivatives coming from Eq. (3.7),
using Lemma B.1(i) again and again. The field equations Eq. (3.8) produce pos-
itive powers of the mass m, that cancel all inverse powers of the expansion: Par-
tially integrating ∂µa

(r)
... (e) against a(r

′)µ...(e′), one gets ma(r)... (e) · · · a(r′−1)...(e′) by
Eq. (3.8), and vice versa. Partially integrating ∂µa

(r)
... (e) against ∂µa(r

′)...(e′), one
gets m2a(r)... (e) · · · a(r′)...(e′) by the Klein-Gordon equation. In the expansion of the
momenta Eq. (4.1), the number of terms with a contractions between derivatives, b
contractions between a(r)(e) and a derivative, b′ contractions between a derivative
and a(r

′)(e′), and c contractions between a(r)(e) and a(r
′)(e′), such that r = b + c,

r′ = b′+c and a+b+b′+c = s, is s!
a!b!b′!c! . Each such term after partial integration be-

comes (schematically) (−1)b+b
′
a(c) · · · a(c) times the same operator quadratic in a(c).

Therefore the combinatorics is done by observing that
∑

a+b+b′=s−c(−1)b+b
′ s!
a!b!b′!c! =

(−1)s−c
(
s
c

)
.

The expansion of the Lorentz generators Eq. (4.2) is likewise just a counting issue,
where special care has to be taken with the tensor indices σ, τ in the second contribu-
tion to Mστ . When they are attached to derivatives, they cancel against the results
of partial integrations according to Lemma B.1(i) in the first term. �

The formulae in Prop. 4.3 have the merit that they do not contain any singular fields,
and one may read back a conserved and symmetric massive string-localized stress-
energy tensor T reg

σρ (e, e′) that is regular at m = 0, in exactly the same way as was
done in Cor. 4.2 from Prop. 4.1. The limit m → 0 can be taken directly by putting
m = 0. But these steps are of little use, because the intermediate escort fields a(r) do
not decouple. We must in turn express a(r) in Prop. 4.3 in terms of the decoupling
string-localized fields A(r−2k). The following result holds only at m = 0, where the
decoupling of 2-point functions is exact.
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Proposition 4.5 At m = 0, one has Eq. (1.8):

Pσ =
⊕s

r=0
P (r)
σ , Mστ =

⊕s

r=0
M (r)
στ (4.6)

where for any e, e′ (with the same caveat as in Remark 4.4)

P (r)
σ = (−1)r

∫
d3~x

[
− 1

4
A(r)
µ1...µr(x, e)

↔
∂0
↔
∂σ A

(r)µ1...µr(x, e′)
]
, (4.7)

M (r)
στ = (−1)r

∫
d3~x (4.8)[

− 1

4
xσ A

(r)
µ×(x, e)

↔
∂0
↔
∂τ A

(r)µ×(x, e′)− r

2
A

(r)
σ×(x, e)

↔
∂0 A

(r)
τ
×(x, e′)

]
− (σ ↔ τ).

The notation in Eq. (4.6) asserts that the generators P
(r)
σ and M

(r)
στ commute with

A(r′) and consequently with P
(r′)
σ and M

(r′)
στ (r′ 6= r), and hence generate the infinites-

imal Poincaré transformations of A(r) according to Eq. (1.11).

Proof: We insert the expansion Eq. (3.13) in terms of Eµµ(e, e)ka
(r−2k)
µ...µ (e) into A(r)(e)

in Eq. (4.7). We partially integrate the derivatives contained in the factors E(e, e)
(cf. Eq. (1.27)). When they hit A(r)(e′), they vanish because A(r) are conserved at
m = 0. The remaining contribution ηµµ of Eµµ is directly contracted with A(r)(e′),
and vanishes because A(r) are traceless at m = 0. Thus, only the leading term
A(r)(e) = αr0a

(r)(e)+ . . . contributes. Now, we expand A(r)(e′) and partially integrate
the derivatives contained in Eµµ(e′, e′) onto a(r)(e), where they vanish because a(r)

are conserved at m = 0. But a(r) are not traceless, and E(e′, e′)k acts like ηka(r)(e) =
(−1)ka(r−2k)(e) by Eq. (3.8). It remains to add up the coefficients∑

2k≤s−r
(αr+2k

0 )2cr+2k
k = (−1)r

(
s

r

)
.

(We were not able to establish this identity for finite sums of rational numbers in
closed form, but have verified them numerically until s = 100.)

Again, the case of the Lorentz generators requires a more involved combinatorics. Let
us consider the first step: the partial integration of derivatives ∂µa

′(e) contained in
E(e, e)ka(r−2k)(e) against A(r)(e′). By Lemma B.1(i), the partial integrations within
the first term in Eq. (4.8) give undesired non-vanishing contributions of the form

−1

4
· 2 · r(r − 1)

2

∫
d3~x

[
a′(x, e)

↔
∂0
↔
∂σ A

(r)
τ

...(x, e′)
]
− (σ ↔ τ),

where the factor 2 · r(r−1)2 counts the assignments of the other contracted indices. On
the other hand, when the index σ is attached to a factor E in the second term of
Eq. (4.8), it gives the undesired term

−r
2
· (r − 1)

∫
d3~x

[
∂σa

′(x, e)
↔
∂0 A

(r)
τ

...(x, e′)
]
− (σ ↔ τ)

with another counting factor. These terms cancel each other by virtue of Eq. (4.5). In
the second step: the partial integration of derivatives ∂µa′′(e′) contained in E(e′, e′)
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within A(r)(e′) against a(r)(e), the cancellations occur with the same pattern. This
shows the equality of the generators in Prop. 4.5 and Prop. 4.3.

The final statements are immediate: A(r) mutually commute, because their mixed
2-point functions vanish. Hence the “r” generators commute with the “r′” fields and
generators. Then the “r” generators act on the “r” fields like the full generators Pσ
and Mστ , hence they implement the correct Poincaré transformations. �

One can now read back conserved and symmetric massless string-localized stress-

energy tensors T
(r)
σρ (r) from Eq. (4.7), Eq. (4.8).

Proposition 4.6 The generators Eq. (4.7) and Eq. (4.8) can be obtained from the
string-localized massless stress-energy tensors for every r ≥ 1:

T (r)
ρσ (x, e, e′) := (−1)r

[
− 1

4
A

(r)
µ×(x, e)

↔
∂ρ
↔
∂σ A

(r)µ×(x, e′) (4.9)

− r

4
∂µ
(
A

(r)
ρ×(x, e)

↔
∂σ A

(r)×
µ (x, e′)

+(e↔ e′)
+(ρ↔ σ)

)]
.

Proof: The argument is the same as with Cor. 4.2. �

The stress-energy tensors T (r) do not depend on the spin s ≥ r of the reduced stress-
energy tensor Eq. (4.3) from which they were extracted at m = 0. By Eq. (3.16),
they can also be expressed in terms of the corresponding field strengths F (r), that are
directly obtained from the massless helicity h = ±r Wigner representations [W95].

As compared to other proposals [FV87, V00, V04, L08, BBS12] evoking an interplay of
infinitely many spins, M-theory, and non-commutative geometry, the string-localized
stress-energy tensors of Prop. 4.6 for every pair of helicities h = ±s are perhaps the
most conservative way around the Weinberg-Witten theorem. They are even “less
non-local” than the examples with unpaired helicities proposed in [L84]. We are
presently investigating how they may be used to (semiclassically) couple massless
higher spin matter to gravity.

Remark 4.7 For charge operators like

Q = (−1)si

∫
x0=t

d3~xAP∗
µ1...µs(x)

↔
∂0 A

Pµ1...µs(x)

for complex potentials, one can proceed in complete analogy as with the momentum
operators, and obtains string-localized massless conserved currents

J (r)
ρ (x, e, e′) =

i

2
A(r)∗
µ1...µr(x, e)

↔
∂ρ A

(r)µ1...µr(x, e′). (4.10)

The string-localized densities T
(r)
ρσ and J

(r)
ρ may be averaged over the directions of

their strings (cf. Remark 4.4) with test functions of arbitrarily small support. Hence,
they can be localized in arbitrarily narrow spacelike cones.
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5 Conclusion

We have introduced string-localized potentials for massive particles of integer spin s,
that admit a smooth massless limit to potentials with individual helicities h = ±r, r ≤
s. We have elobarated several remarkable properties of the massless limit, including
an inverse prescription how to pass from the massless to the massive potentials via a
manifestly positive deformation of the 2-point function.

As a byproduct, we could construct string-localized currents and stress-energy tensors
for massless fields of any helicity, that evade the Weinberg-Witten theorem in a very
conservative way.

Our results also allow to approximate string-localized fields in the massless infinite-
spin Wigner representations [MSY06] by the massive scalar escort fields A(0) of spin
s→∞, m2s(s+ 1) = κ2 = const. (Work in progress [MRS].)

The feature of string-localization arises just by multiplication operators in momentum
space (of a special form), acting on the intertwiner functions that define covariant
fields in terms of creation and annihilation operators of the (m, s) Wigner represen-
tations.

In particular, string-localization of the fields does not change the nature of the parti-
cles that they describe, nor does it relax any of the fundamental principles of relativis-
tic quantum field theory. We emphasize that we regard fields (associated with a given
particle) mainly as a device to formulate interaction Lagrangeans. String-localized
interactions are admissible whenever their string-dependence is a total derivative. In
that case, string-localized fields have the primary benefit of a better UV behaviour
than point-localized fields associated with the same particles. They therefore admit
the formulation of interactions that are otherwise only possible at the expense of
introducing states of negative norm and compensating ghost fields.

The renormalized perturbation theory of interactions mediated by string-localized
fields is presently investigated. It bears formal analogies with BRST renormalization,
but is more economic (by avoiding auxiliary unphysical degrees of freedom), and much
closer to the fundamental principles of relativistic quantum field theory.

The necessity of using string-localized quantities to connect the vacuum state with
scattering states in theories with short-range interactions was exhibited much earlier
by Buchholz and Fredenhagen [BF82] who investigated, in the framework of algebraic
quantum field theory, the localization properties of particle states in charged sectors
relative to the vacuum. Their conclusion was that, depending on the given model,
the best possible localization is in an arbitrarily narrow spacelike cone, and that in
the presence of a mass gap it cannot be worse in general.

The emerging renormalized perturbation theory using string-localized fields [S15, S16,
M17, MS17, GMV17] is the practical realization of this insight.

Acknowledgements. JM and KHR were partially supported by CNPq. KHR and
BS enjoyed the hospitality of the UF de Juiz de Fora, where parts of this work were
done. We thank D. Buchholz for pointing out ref. [L84].
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A Stress-energy tensors for higher spin fields

[FR04] and [GM92] give excellent discussions of how to properly define stress-energy
tensors. We focus only on a few facts.

It is well-known from the example of the free Maxwell field, that the canonical defi-
nition

Tρσ =
∑ ∂L

∂∂ρφ
∂σφ− ηρσL[φ],

where the sum extends over all independent fields, may not give rise to a symmetric
stress-energy tensor. Consequently its Lorentz generators defined by Eq. (1.7) are not
time-independent, even if L is Lorentz invariant. In the Maxwell case, the canonical
stress-energy tensor is also not gauge invariant, and both defects can be cured “in one
stroke” by adding a trivially conserved term ∂κ(FµκAν). There are many prescriptions
(e.g., [B39, R40]) to obtain symmetric stress-energy tensors in the general case.

The modern approach uses the Hilbert stress-energy tensor that is defined by varying
a generally covariant version of the action [R40, HE73, FR04, GM92] with respect to
the metric, and then putting gµν = ηµν :

Tρσ(x) := 2
δS

δgρσ(x)

∣∣∣
g=η

.

The Hilbert tensor is always symmetric and conserved. In both approaches, one first
needs a Lagrangean whose Euler-Lagrange equations are the equation of motion.

This question has been addressed by Fierz and Pauli [FP39] and Fronsdal [F78] for
free massive spin s fields; they used auxiliary fields to ensure the vanishing of the
divergence. When varying with respect to the metric, one may omit terms involving
the divergence and the auxiliary fields that vanish by virtue of the equations of motion.
For s = 2, this gives

L =
1

4
FP
[µν]κF

P[µν]κ − m2

2
AP
νκA

Pνκ. (A.1)

The generally covariant action is

S =

∫
d4x
√
−g
(1

4
gµµ

′
gνν

′
FP
[µν]κF

P
[µ′ν′]κ′ −

m2

2
gνν

′
AP
νκA

P
ν′κ′

)
gκκ

′

where FP
[µν]κ := DµA

P
νκ−DνA

P
µκ = ∂µA

P
νκ−∂νAP

µκ−(ΓλµκA
P
νλ−ΓλνκA

P
µλ). The variation

of gµµ
′

and gνν
′

and the factor
√
−g in S give the stress-energy tensor

T (Fierz)
ρσ = ηλλ

′
FP
[ρλ]

µFP
[σλ′]µ −m

2AP
ρ
µAP

σµ − ηρσL. (A.2)

This tensor was first considered by Fierz [F39]. However, unlike the case of antisym-
metrized indices, the Christoffel symbols for the indices κ, κ′ do not drop out; and
the contraction by gκκ

′
carries another dependence on the metric, so that we have

Proposition A.1 The Hilbert stress-energy tensor is Tρσ = T
(Fierz)
ρσ + ∆Tρσ with

∆Tρσ = −1

2
∂µ
[
AP
ρ
λFP

[σλ]µ +AP
σ
λFP

[ρλ]µ +AP
µ
λ
(
FP
[λρ]σ + FP

[λσ]ρ

)]
. (A.3)
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Fierz [F39] has shown that T (Fierz) produces the Hamiltonian

P0 = −1

4

∫
d3~xAPµν

↔
∂0
↔
∂0 A

P
µν ,

and one easily verifies that the commutator is i[P0, A
P
µν ] = ∂0A

P
µν .9 The same is

true for all Pσ. Fierz has actually given a hierarchy of s linearly independent stress-
energy tensors T (q) for the free massive spin s field. They involve an increasing
number q = 1, . . . , s of derivatives of the potential, and overall factors (−2m2)−(q−1).
They all produce the same generators Pσ that implement the correct infinitesimal
translations i[Pσ, A

P
µ1...µs ] = ∂σA

P
µ1...µs .

The Fierz stress-energy tensors also all produce the same generators M
(Fierz)
στ , but the

latter do not implement the correct infinitesimal Lorentz transformations! E.g., for

s = 2, one finds i[M
(Fierz)
0i , AP

00] = (x0∂i − xi∂0)AP
00 + Ai0 −m−2∂0FP

[0i]0 rather than

the correct i[M0i, A
P
00] = (x0∂i − xi∂0)AP

00 + 2Ai0.

This defect is precisely cured by the correction ∆Tρσ in the Hilbert stress-energy
tensor, given in Eq. (A.3). For general spin s, one computes the Hilbert stress-energy
tensor T = T (Fierz) + ∆T where T (Fierz) is exactly as in Eq. (A.2) with an overall sign
(−1)s (due to our sign convention of the metric) and the contracted index µ replaced
by s − 1 contracted indices µ2 . . . µs, and ∆T is exactly as in Eq. (A.3) with the
same overall sign factor (−1)s, with an additional factor s− 1 (due to its origin from
s − 1 additional contractions and Christoffel symbols for s − 1 indices), and every
field equipped with s − 2 additional contracted indices µ3 . . . µs. This finally gives
the Lorentz generators Eq. (4.1) and Eq. (4.2), from which we have read back the
reduced stress-energy tensor Eq. (4.3). (The two parts in Eq. (4.3) do not separately
correspond to T (Fierz) and ∆T .)

(We are not aware of a general argument that the Hilbert tensor always, also in the
presence of constraints, yields the correct generators. This issue is not explicitly
mentioned in the literature, including the reviews [GM92, FR04].)

Because T red has the same generators as T = T (Fierz) + ∆T , their densities differ by
spatial derivatives (“irrelevant terms”). One can verify this by hand (but we spare
the reader this cumbersome exercise), by first rewriting T (Fierz) with the help of the
identities

ηλλ
′
FP
[ρλ]×F

P
[σλ′]

× −m2AP
ρ×A

P
σ
× = FP

[ρµ]×∂σA
Pµ× − ∂µ

(
FP
[ρµ]×A

P
σ
×)

and

−1

4
FP[µν]×FP

[µν]× +
m2

2
APν×AP

ν× = −1

2
∂µ
[
APν×FP

[µν]×

]
,

then adding ∆T , and finally showing that the difference from Eq. (4.3) does not
contribute to the generators according to Lemma B.1(i) and (ii) (where Θ are various
contributions to the stress-energy tensor).

9see Prop. 4.1.
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B A useful lemma

The following (rather trivial, but very useful) lemma deals with a covariant form of
partial integration of four-derivatives in spatial (fixed-time) integrals.

Lemma B.1 With a tensor Θρσ we associate the “charges” (not necessarily indepen-
dent of t) Πσ :=

∫
x0=t

d3~xΘ0σ and Ωστ :=
∫
x0=t

d3~x (xσ Θ0τ − xτ Θ0σ). We assume
all fields or functions to have sufficiently rapid decay in spatial directions, so that
boundary terms do not matter.

(i) If Θρσ is of the form

Θρσ = ∂µ
(
Yµ
↔
∂ρ Zσ

)
(or a sum of terms10 of the same structure), where Y and Z are solutions to the Klein-
Gordon equation, then ∂ρΘρσ = 0 trivially. The charges Πσ :=

∫
x0=t

d3~xΘ0σ = 0
vanish, and the charges Ωστ are

Ωστ =

∫
x0=t

d3~x
(
Yτ
↔
∂0 Zσ − Y0

↔
∂τ Zσ

)
− (σ ↔ τ).

(ii) The same is true with
Θρσ = ∂µX[µρ]σ,

where [µρ] stands for an anti-symmetric index pair, and

Ωστ =

∫
x0=t

d3~x
(
X[τ0]σ −X[σ0]τ

)
.

(iii) In order for Ωστ to vanish, the respective integrands have to be spatial derivatives.

Proof: Θ0σ = ∂µX[µ0]σ in (ii) is a spatial derivative, because the term µ = 0 is absent
by anti-symmetry. The claim follows by partial integration. (i) is a special case of

(ii) by writing Θρσ = ∂µ
(
Yµ
↔
∂ρ Zσ − Yρ

↔
∂µ Zσ

)
. The statement (iii) is trivial. �
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[DS99] M. Dütsch, G. Scharf: Perturbative gauge invariance: The electroweak theory, Ann.
Phys. (Leipzig) 8 (1999) 359–387.

10A term Y
↔
∂ρ Zµσ = Y δλµ

↔
∂ρ Zλσ can be written as a sum over terms of this form.



CBPF-NF-004/17 29
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