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Abstract

In this paper we quantize superconformal o-models defined by worldline supermultiplets.
Two types of superconformal mechanics, with and without a DFF term, are considered.
Without a DFF term (Calogero potential only) the supersymmetry is unbroken.

The models with a DFF term correspond to deformed (if the Calogero potential is present)
or undeformed oscillators. For these (un)deformed oscillators the classical invariant super-
conformal algebra acts as a spectrum-generating algebra of the quantum theory.

Besides the 0sp(1|2) examples, we explicitly quantize the superconformally-invariant worl-
dine o-models defined by the N/ = 4 (1,4, 3) supermultiplet (with D(2,1;«) invariance, for
a #0,1) and by the N' =2 (2,2,0) supermultiplet (with two-dimensional target and sl(2|1)
invariance). The parameter « is the scaling dimension of the (1,4,3) supermultiplet and,
in the DFF case, has a direct interpretation as a vacuum energy. In the DFF case, for the
sl(2|1) models, the scaling dimension A is quantized (either A = £ + Z or A = Z). The
ordinary two-dimensional oscillator is recovered from \ = f%. The spectrum of the theory is
decomposed into an infinite set of lowest weight representations of sl(2|1). Surprisingly, extra
fermionic raising operators, not belonging to si(2|1), allow to construct the whole spectrum
from a single (for A = £ + Z) bosonic vacuum.
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1 Introduction

In this paper we quantize superconformal o-models defined by worldline supermultiplets. We
consider two types of superconformal mechanics, parabolic or trigonometric [1], namely in the
absence or, respectively, in the presence of an oscillatorial DFF term [2].

In the absence of a DFF term the systems under consideration possess only a Calogero
potential [3]; they are supersymmetric and with a continuous spectrum. In the presence of
a DFF term they correspond to deformed (if the Calogero potential is present) or undeformed
oscillators with a discrete, bounded from below, spectrum. For these (un)deformed oscillators the
classical invariant superconformal algebra acts as a spectrum-generating algebra of the quantum
theory.

We illustrate at first our method with two osp(1|2)-invariant examples, the ordinary one-
dimensional harmonic oscillator being recovered in the trigonometric case. Later we explicitly
quantize the superconformally-invariant worldine o-models defined by
i) the N =4 (1,4, 3) supermultiplet with scaling dimension « # 0, —1 (these models are classi-
cally invariant under the exceptional D(2,1;«) Lie superalgebra) and
i) the NV = 2 (2,2,0) supermultiplet of scaling dimension A (these models present a two-
dimensional target and classical sl(2|1)-invariance).

For the (1,4, 3) supermultiplet, at the special o = —% value, the Calogero potential terms
are vanishing. For this value the invariant superalgebra is D(2,1; —3) = D(2,1) ~ osp(4]2).
An interesting result, in the (1,4,3) trigonometric case, consists in the direct and simple in-
terpretation of a as a vacuum energy (if « is regarded as an external control parameter, it
determines the Casimir energy of the system).

For the s/(2|1) models the scaling dimension A is quantized (either A = 3 +Z or A = Z).
In the trigonometric case the ordinary two-dimensional oscillator (without Calogero potential
terms) is recovered from the special A = —% value after a superselection of the spectrum, defined
by a projection operator, is imposed. The spectrum of the theory turns out to be decomposed
into an infinite set of lowest weight representations of sl(2|1). By construction, the role of si(2|1)
as a spectrum-generating algebra is expected. What is quite unexpected and surprising is the
further result that extra fermionic raising operators, not belonging to the sl(2|1) superalgebra,
allow to construct the whole spectrum from the single A = % + Z bosonic vacuum (in Appendix
A this action is visualized in diagrams).

Models of superconformal mechanics have been investigated in [4]-[12] (see, e.g., the review
[13] and references therein). For superconformal actions with oscillator potentials see [14, 15, 1].
(Super)conformal mechanics is currently a very active area of research; among the motivations
for this interest one can mention the AdSs/CFT; correspondence [16, 17], or the possibility to
apply it to test particles moving in the proximity of the horizon of certain black holes, see [11].

N = 4 superconformal models based on the exceptional (see [18]) Lie superalgebra D(2,1; «)
were investigated in [19]-[26]. The models considered in those works, mostly classical, are
supersymmetric; for that reason they do not allow the presence of the oscillatorial DFF terms (in
Appendix C we comment about the “soft” supersymmetry property of the oscillatorial models).
The recognition in [28] that conformal mechanics could allow new potentials, permitted the
introduction in [1] of the trigonometric (read, oscillatorial) classical D(2, 1; ) models.

The scheme of the paper is the following.

Sections 2, 3, 4 are propaedeutic. In Section 2 we discuss the change of coordinates from lin-
ear to non-linear realizations of the superconformal algebras (the “constant kinetic basis”) which
allows us to present the worldline superconformal o-models in the Hamiltonian framework. A
detailed description of the passage from classical Lagrangians to Hamiltonians is given in Sec-
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tion 3. In Section 4 the quantization procedure and the construction of the Noether charges is
explained for two examples, the parabolic and trigonometric osp(1|2)-invariant o-models. Sec-
tion 5 contains the main results for the quantization of the parabolic (i.e. both superconformal
and supersymmetric) quantum models with D(2, 1; a)-invariance, based on the NV = 4 worldline
supermultiplet (1,4, 3), and sl(2, 1)-invariance, based on the N' = (2,2,0) worldline supermulti-
plet. In Section 6 the main results of their quantum trigonometric versions are derived. These
systems contain DFF terms and are “softly supersymmetric”. They correspond to (un)deformed
oscillators. The main results are the derivation of the vacuum energy in terms of the a scaling
dimension for the (1,4, 3) supermultiplet and the derivation of the spectrum-generating super-
algebra for the (un)deformed two-dimensional oscillator with quantized scaling dimension .
In Appendix A diagrams are presented illustrating the decomposition of the two-dimensional
oscillators in terms of the si(2|1) lowest weight representations, interconnected by the puzzling
extra fermionic raising and lowering operators introduced in Section 6. For completeness in
Appendix B the classical version of the trigonometric N' = 2 (2,2,0) superconformal o-model
is presented. Finally, in Appendix C we discuss the “soft supersymmetry” of the (un)deformed
oscillators and the role, for these theories, of the spectrum generating superalgebras. In the
Conclusions we present the open questions raised by our analysis.

2 Worldline (super)conformal o-models in constant kinetic basis

A convenient approach, in constructing one-dimensional superconformal o-models, consists in
starting from a linear D-module representation of the superconformal algebra. Once such a
representation is known, the Lagrangian defining the superconformally invariant action can be
systematically constructed by applying fermionic generators to a prepotential function which
depends only on the propagating bosons. The requirement of superconformal invariance, im-
posed as a constraint, determines the specific form of the prepotential. This method (and its
applications) has been discussed in [1].

The kinetic term ®()30;;(d;&; + ...) of the derived Lagrangian is an ordinary constant
kinetic term multiplied by a conformal factor ®(#) which is a function of the propagating bosons.
In order to apply the standard methods of quantization we need to reabsorb the conformal factor.
One way to do this consists in introducing a new set of fields. In the new basis of fields the
kinetic term is expressed as a constant coefficient (hence the name “constant kinetic basis” given
in [1]); the superalgebra, on the other hand, is realized non-linearly.

In [1] the procedure of changing the basis (from the “linear” to the “constant kinetic” basis)
was sketched for certain D-module representations acting on supermultiplets consisting of a
single propagating boson. We discuss it here in a more general framework.

Let us consider a D-module irrep of a N-extended superconformal algebra (for our purposes
N =1,2,4,8) acting on a (k, N, N — k) supermultiplet [29, 30, 31, 32] (namely, k¥ propagating
bosons, N fermions and N’ — k bosonic auxiliary fields). In the linear basis the propagating
bosons are labeled as 1, ..., g, the fermions as %1, ..., ¥ and the auxiliary bosons as by, ...,
by —i. The kinetic term in the Lagrangian is given by

%T—”f* (Emim + wihghs — w?babn). (1)
In the above equation the convention over repeated indices is used. The constant w is dimen-
sionless (and can be set equal to unity) in the parabolic case, while it is dimensional, see [1],

in the hyperbolic/trigonometric case. The function r is r = (mm:rm)% and the parameter A is
the scaling dimension of the supermultiplet. At A\ = —% the kinetic term is constant. For the
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remaining \ # —% values a change to a constant kinetic basis is required in order to present a
kinetic term with constant coefficients. Let us denote the propagating bosons in the constant
kinetic basis as y1, ..., yi, the fermions as x1, ..., xa and the auxiliary bosons as ay, ..., any_k.
The transformations passing from the “linear” to the “constant kinetic” basis are given by:

i) for the (1, V', — 1) supermultiplets we have

_142x _142)

y= *2)‘$_%, Xg=x 2 7/’67 ap =2~ 2 by; (2)
in terms of the new fields equation (1) is expressed as
... : 2
5 (09 +iwxpxs — wanan); (3)

it) when N > 2, for the (2, V', N — 2) supermultiplets it is convenient to use a complex notation
for the propagating bosons and set

1 1
y = —2X(x1 + ixe)” 2%, Yyt = =2z —ixg) X,
XB = 7”7 1‘5§>\ ¢B7 an = 7"7 1<5§>\ b?’l) (4)

so that the kinetic term can be expressed as

1., . .
50" +iwxgs — w?anan); (5)

iii) when N' = 4,8 it is possible to construct a constant kinetic basis for any (k,N,N — k)
supermultiplet at the specific A = 1/2 value of the scaling dimension via the transformations

_ ITm o wﬁ o by,
ym_ﬁa Xﬁ_ﬁa an—ﬁa (6)
leading to the kinetic term
1. . . . 9
i(ymym + iwXsXE — Wanay). (7)

For N = 4 and k # 2, irreps of the exceptional superalgebras D(2,1;«) are recovered, see
[25, 26, 1], from the (k, 4,4 — k) supermultiplets according to the relation

a=(2-k)\ (8)

At the special A = % value the associated superalgebra is A(1, 1) for the (4,4,0) supermultiplet
and D(2,1) for the (3,4,1) supermultiplet.

For N' = 8 and k # 4, irreps of superconformal algebras are recovered for each supermultiplet
(k,8,8 — k) at the critical values of the scaling dimension given by

1

Ap = ——.
Tk —4

9)
The special value A = % yields an irrep of A(3,1) acting on the supermultiplet (6,8,2). The
reader is referred to [25, 26] for a detailed discussions on the criticality of the scaling dimension
of the N' = 4, 8 superconformal algebras.
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3 From Lagrangians to classical Hamiltonians: an application
to the osp(1|2)-invariant o-models

The quantization of the 1D superconformal o-models follows the canonical procedure formalized
by Dirac and based on the classical Hamiltonian formalism. Since these o-models have fermionic
degrees of freedom, the passage from the Lagrangian to the classical Hamiltonian formalism
requires the use of Dirac brackets (see, e.g., [33]). The need for Dirac brackets becomes clear
after inspecting equations (3), (5) and (7); it is due to the fact that the linear dependence on
the fermionic velocities xg forces us to extend the phase space of the system and treat the
fermionic canonical momenta as constraints in this extended phase space. In Dirac’s language
these constraints are both primary (they hold even without using the equations of motion) and
second class (namely, a constraint that has a non-vanishing Poisson brackets with at least one
of the constraints).

This procedure, used throughout the paper, will be illustrated in detail for the simplest
possibility given by the osp(1|2)-invariant o-models (their two variants, parabolic and hyper-
bolic/trigonometric, see [1]). In the parabolic case the Hamiltonian is identified with a bosonic
root of the superconformal algebra, while in the hyperbolic/trigonometric case it is associated
with a Cartan element. The parabolic D-module reps describe systems which are supersymmet-
ric, while the hyperbolic/trigonometric reps furnish only a weak version of supersymmetry, see
the discussion in the Introduction. The hyperbolic and trigonometric models are interrelated
via a Wick rotation of the dimensional parameter w. The trigonometric case is here emphasized
with respect to the hyperbolic one because it yields a bounded from below Hamiltonian.

In the rest of this Section we discuss in detail the Hamiltonian formulation of both parabolic
and trigonometric osp(1|2)-invariant o-models. The method, notations and conventions here
presented are later applied to models with larger superconformal symmetry.

3.1 The osp(1]2)-invariant parabolic o-model

In the constant kinetic basis the generators of the osp(1|2) parabolic D-module rep read as
(3 0 _(ta—-% 0 (-t 0
H’(o @)’D—< o w ) KT o0 ea )

0 1 _ 0 ¢
QZ(@ 0>’ Q:<it6t—i 0)‘ (10)

The above generators act on the column vector supermultiplet (y,x)”

dimension A = —%.

The bosonic generators H, D, K span the sl(2) Lie subalgebra, while the fermionic generators
@, @ span the odd sector of osp(1]2).

The associated osp(1|2)-invariant action is simply

possessing the scaling

S = [dtL = [dti (s +ixx). (11)

Unlike the A/ > 2 superconformal algebras discussed in the following, for osp(1]2) the same
action is recovered by starting from a generic D-module rep with scaling dimension A # —% and
applying the (2) change of basis.
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For a theory possessing bosons and fermions a conserved Noether charge is expressed, for a
symmetry generator O, as

oL
Co = (6091)— — Jo: (12)
b1
where Jp stems from the variation dp L = dstO; the sum over the repeated index I labeling the
fields is understood. The given ordering of the right hand side of (12) is essential in dealing
with Grassmann variables and derivatives.

For the case at hand the classical Noether charges are
\2 -2 - 2.2 . 2 . .
Cu=%, Cp="% -4, Cx="—tyj+%, Co=9x, Cg=tix+yx. (13)

The Euler-Lagrange equations

oL d,oc

26 %(%) (14)

lead to the equations of motion
ij=0, x =0. (15)

The Grassmann variable in the classical osp(1]2) model is a constant and plays essentially no
physical role besides ensuring the osp(1]|2) invariance.

To introduce the Hamiltonian formalism we have to compute the conjugate momenta given
by

. oL )

In the Hamiltonian framework the classical charges (13) are rewritten as

2 £2p2 y?
Cg = 5 Cp = - " 5 Ck = = —typ + 5 Co=px, Co=tpx+yx. (17)
The last step requires defining the Dirac brackets. The second equation in (16) makes clear why
Dirac brackets need to be introduced. The conjugate momentum 7 to the Grassmann variable
X is not an invertible function of the velocity x. The second equation in (16) should therefore

be viewed as a second class constraint on the phase space,

— iy 18
u 7T—|—2 (18)

The super-Poisson bracket involving even or odd f, g functions is given by

aca 21 99 OF 09 )

o _1\deg(
.ok = S (-ytattieatn 0L 00 0T 00,

I

where the degree function deg is 0 if evaluated on bosons and 1 on fermions.
Denoting with u; the set of all second class contraints, the Dirac bracket reads as

{f,9tp=1{f.9}p — Z{f» u}pUy {w, g} p, (20)

k.l
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where Uy = {ug,u;}p is a matrix constructed from the super-Poisson brackets of all second
class constraints.
u entering (18) is a second class constraint, since it satisfies

{u,u}p = —i.
A straightforward computation gives the non-vanishing Dirac brackets

{y,p}p =1, {x.x}p =—i. (21)

We can derive, with the use of the Dirac brackets, the equations of motion in the Hamiltonian
formalism and compute (recovering osp(1]2)) the superalgebra satisfied by the (17) conserved

charges.
In terms of Dirac brackets the Hamilton’s equations are
.0
6=+ 19.Cnp. (22)
For the case at hand we get
p=0, Xx=0, (23)

which, together with the p = g position, allow to recover (15).

3.2 The osp(1]2)-invariant trigonometric o-model

In the trigonometric case the passage from the Lagrangian to the Hamiltonian formalism follows
the same steps as before. We therefore skip unnecessary comments.
In the constant kinetic basis the generators of the osp(1|2) trigonometric D-module rep are

H:ei“t<‘*1’8t_;x 0> D:<iat 0) K:e_m<i8t+;x 0)

0 1o, 0 Llo 0 L,
it 0 1 = _iwt 0 1
= (whp o) = (wln o) .
The osp(1]2)-invariant action is
1 2. . w? 2
S= [ dtL = dt§(y + iwxx) — <Y (25)

The derived conserved Noether charges are

; 1 1 w 1 w ; 1 ] w
C _ pwte — 22 7. M2 C — 2 had C _ ptwt — 2 o X2
=gy — oy —gy) Cp=o 97+ oy Cr=e™ (5 0"+ oy~ gv),
iwy W dwy Tw
Co=e2'(hx — Sux), Co=e¢ 2'(Ix+ S ux). (26)
The Euler-Lagrange equations of motion are
2
. w Yy .
j=—-——", x = 0. (27)
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The conjugate momenta are given by

p=G=y m=OE= i 29

In the Hamiltonian formulation, the (26) conserved charges are

: 1 1 w 1 w : 1 1 w
C _ plwte — 2 7 T2 C — 2 w2 C — p—wt — 2 v 7.2
H=e (oo —gyup = g¥), Cp=go-p"+ oy, Ox=e (5 —p"+ gyp— ov°),
iw W _iw Tw
Co=e>'lpx—5yx), Co=e 2'(ox+ 5 v (29)
The second equation in (28) gives the constraint in phase space
u=m+ %, (30)

which allows to compute the Dirac brackets as before. The non-vanishing Dirac brackets are

{v;pkp=1,  {x;x}p= —g. (31)

The Hamilton’s equations of motion are now written as

) L)

¢ =w{¢,Cp}p + e (32)
One should note that, while in the parabolic o-model the charge C'f is the physical Hamiltonian
and the symmetry operator H is the generator of the time translations, in the trigonometric
o-model the physical hamiltonian is given by wCp, the Cartan generator wD being the generator
of the time translations. One can readily check that equation (32) leads to

p=—-—7> x=0 (33)

which reproduce (27) by taking into account that p = g.

4 The quantization. Quantum versus classical Noether charges
and the osp(1]2) models

The canonical quantization of the models presented in Section 3 is realized by substituting the
Dirac Brackets by the appropriate (based on the superalgebra structure) (anti)commutators,
that we will denote with the “[.,.}” symbol:

(A B}y — %[A, B). (34)

By applying (34) to (21) and (31) we get, respectively, the parabolic and trigonometric osp(1]2)-
invariant quantum superconformal models.

We point out that, since the observables must be Hermitian operators, the parabolic and
trigonometric quantum models correspond to different real forms (read, conjugations) of the
invariant superalgebra. We illustrate in detail this feature, which is also valid for N > 2
invariant theories.
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4.1 The parabolic osp(1|2)-invariant quantum c-model

The non-vanishing (anti)commutators recovered from (21) are
[9.0] =ih,  {X.X} =" (35)

In the position-space representation the above operators are given by

i=y.  p=-id,  x=1/h (36)

The last equation is particularly important because it tells us that the fermionic field y, classi-
cally represented by a Grassmann variable, becomes a Clifford variable x in the quantum version.
The choice in (36) of representing \ as a real number (that we can think of as the generator of
the Cl(1,0) Clifford algebra), is not unique. An alternative choice, which respects the Zg-graded
structure of the super-vector space acted upon by the operators g, p, ¥, consists in picking y as
the 2 x 2 matrix element corresponding to the antidiagonal Clifford algebra generator Cl(2,1)
with positive square. In this Zs-graded representation, the operators g, p, x are

[y 0 [ —ihd, 0 . (01 (1 0
y‘<0 y> p‘( 0 —ihd, ) X_\/; 1o) M=o 1) 86D

while Ny is the Fermion number operator.

The possibility, offered by the Zs-graded structure, of doubling the vector space, will be used
in the following in constructing the trigonometric and A/ = 2,4 quantum models.

The parabolic quantum osp(1|2) superalgebra obtained by the (34) quantization of the clas-
sical counterpart, leads to

[H,D) =ihH, [H,K]=2ihD, |[K,D]=—ihK

A 2 oA A N - A A Zh N 2 A Zh 2
[H7 Q} = ZhQa [Kv Q] = _Zth [Q7 D} = §Q> [Q: D] = _§Q>
{Q.Q} =20, {Q.Q}=2nD, {Q,Q} =2hK. (38)
The remaining (anti)commutators are vanishing.
The above superalgebra is realized by the quantum charges
.1 At 1 .t ¢ 1
H=2-# D=1Ls2_2ros4s0 K="052_ Yoo 60) 4+ —2
A 5P" = 0P+ PY), 5P — 5P +P§) + 577,
Q=xp, Q=txp—ix. (39)

They are, up to symmetrization, identical to the classical charges. This is a unique feature of
the N/ = 1 0sp(1|2)-invariant models. From A > 2 the models explicitly depend on the scaling
dimension A. As a result, the quantum versions of these theories require corrections which
are traced backed to the mapping of the classical Grassmann variables into quantum Clifford
generators.

The Hamiltonian H in (39) corresponds to the one-dimensional free particle. The operators
H , D K close the sl(2) bosonic symmetry algebra of the system. H and Q gives the N/ =1
algebra of the Supersymmetric Quantum Mechanics. In terms of the (36) realization (Y is a real
number) the parabolic osp(1|2)-invariant model admits no fermionic degrees of freedom. This
is no longer the case (fermions are present) if the model is expressed via the (37) realization.
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In the parabolic model all charges entering (39) are observables. The superalgebra (38) can
be re-expressed in terms of the canonical osp(1]2) Cartan-Weyl basis H, F'*, ET (such that all
the structure constants are real), see [18], through the identifications

~ N

H=-E-, D=iH, K=-E", Q=2F", Q=2F". (40)

The computation of the osp(1|2) structure constants in the new basis is immediate.
The superalgebra conjugation corresponding to (39) reads, in the Cartan-Weyl basis, as

(BN =E* H'=-H, (F) =5(F"). (41)

Concerning the dimensional analysis of the model we can set, without loss of generality,
[0;] = 1. If we set the Planck constant i and the action S to be dimensionless, we therefore get

] =% [p =3, [X] = [S] =0.

4.2 The trigonometric osp(1]2)-invariant quantum o-model

The quantization of the trigonometric model follows the same lines of the parabolic one. Without
loss of generality we can set w = 1, reproducing the non-vanishing (anti)commutators (35) and
the (36) and (37) position-space representations for the operators ¢, p, Y.

The quantum trigonometric generators, identical to the classical ones up to symmetrization, are

B = 65— {p+pi) — 537, K = e (Gt 39+ pi) — 97,
D=+ Q=i i), Q=c i+ pui) (42)
In the (42) realization, the osp(1|2) non-vanishing brackets reads as
[H,D)=hH, |[H,K]=2hD, |[K,D]=—-hK,
H.Q)=hQ,  [K.Ql=-hQ, [2.DI=20. [@.D]=-20.
{Q.Q} =2, {Q.Q}=2hD, {Q.Q}=2hK. (43)

The osp(1|2) Cartan-Weyl basis is recovered, from the (42) trigonometric charges, via the iden-
tifications

H=FE-, D=H  K=-Ef, Q=2F", Q=-2F". (44)
We obtain a different conjugation with respect to the parabolic case, given by
(EX)Y'=-EF, H' =H,  (Ff)=F7F. (45)

In the trigonometric case the Hamiltonian is given by the osp(1]2) Cartan generator wD.
By taking into account the presence of the dimensional parameter w that we set, for conve-
nience, equal to 1 in the formulas above, the dimensional analysis of the trigonometric model

gives us the dimensions [t] = —1, [§] = —3, [p] = 3. [{] = —3, [w] =1, [S] =0.
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5 Superconformal Quantum Mechanics with Calogero poten-
tials: 1D D(2,1;a) and 2D sl(2|1) models

In this Section we quantize the worldline superconformal o-models recovered from the N/ = 4
(1,4,3) (i-e., one-dimensional target) and N' = 2 (2,2,0) (i.e., two-dimensional target) parabolic
supermultiplets. Unlike the N' = 1 parabolic model analyzed in Section 4, non-trivial potential
terms and non-trivial quantum corrections to the classical Hamiltonians, appear.

The N = 4 (1,4,3) parabolic model possesses a D(2,1;«) invariance, where o # 0,—1 is
identified with the scaling dimension of the supermultiplet. The Hamiltonian describes a particle
moving on a line under an inverse square potential and includes spin-like degrees of freedom.

The N = 2 (2,2,0) parabolic model possesses an sl(2|1) invariance. Its Hamiltonian describes
a particle moving on a plane under an inverse square potential and with a spin-orbit coupling.

5.1 The N =4 (1,4,3) parabolic model with D(2,1;«) invariance

A discussion of the classical N = 4 (1,4, 3) superconformal worldline model can be found, e.g.,
in [1]. We present here the quantization of this model repeating the same steps discussed in
Section 4 for the osp(1]2)-invariant model.

The non-vanishing (anti)commutators obtained from quantizing the Dirac brackets are

A A

[%p] =1, {)A(Om XB} = 60(57 (46)

with a,8 = 0,...,3. The above equations define the superalgebra h; & C4, with the one-

dimensional Heisenberg algebra h; in its even sector and the four C¥¢(4,0) Clifford algebra

gamma-matrices in its odd sector. These gamma-matrices can be expressed as 4 x 4 complex

matrices. We choose, to respect the Zo-graded structure of the superalgebra, block-antidiagonal

gamma matrices, while representing the Heisenberg generators as block-diagonal operators.
The position-space representation of (46) is

@ = Z/H47 ﬁ = _iayﬂ4a

R 1 . 1 R 1 R 1
onﬁ@@b’ Xlz—ﬁm@(fl, X2:_EGI®02’ X3=—ﬁ0’1®0’37(47)

where I, is the n x n identity matrix and the o;’s (i = 1,2, 3) are the Pauli matrices.
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The quantum charges are given by

2 2

N p* (14 2«) 1+ 2«

H = (—+—7F-+)1I _

( 9 + 8:[)2 ) 4+ 4(@2 f4a

R tp? 1, t(1+2a)? t(1+4 2a)

D = (—-- ~ I Fu,

. 2p% ¢ 72 (1 +2a)? t2(1 + 2a)
K = (— — —(9yp z I F.

(= 5@ +pg) + 5 + 57 )La 17 4
N o (14 2« XiXiXk
Qo = Xop+ ( 5 )emk SIAT
Yy

A oo (4 2a)  XoXjXk

Qi = i ( 9 )Eijk Aj )
)

2 o it 4+ 2« XiXiXk
Qo = tXop — X0y + ( 5 )eijk: S,

a A 1t 4+ 2« X0Xi Xk
Qi = tXiP—XiJ — ( 5 )fijk L2

5 S o

i = _2(561'ijij + XoXi),

A L1 o
L; = —Z(iez‘ijij — X0Xi)- (48)

In the above formulas we used the Fermi number operator Fy, defined by Fa, = ( HS‘ _(])In )

One should note that the quantum operators H ) D, K contain an Ehrenfest quantum correction
term, proportional to wh, which is not present in the classical charges. Its appearance
can be traced to the change from classical Grassmann to quantum Clifford variables.

At a given value a # 0, —1, the above operators close the exceptional superalgebra D(2, 1; ).
The R-symmetry generators J; and L;, i = 1,2,3, close two independent ([J;, Lj] = 0) su(2)
subalgebras.

In the Cartan-Weyl basis the non-vanishing D(2, 1; ) brackets are given by

1
[H,E¥]|=+E*, [EY,E7]=2H, [H,Fjl=+5F;, [E*FJ]=-F},

2" 8
i . iAo i+ 1)
{Fy FJ} = 1 A+ A+ A) L), {F F )= e (= Ji+ = —Lu),
1 . .
{Fy,Ff} = :|:§557Ei, [T, Fy | = iF5, [, B = i(=0Fy + e Fy),
[Lj, Fy] = —iF}", [Lj, F] = i(0nFy + e Fy),
[Jj, k] = 2iejp i, [Lj, L] = 2i€jp L. (49)

The above superalgebra is realized by the (48) quantum operators via the identifications
A=-E~, D=iH, K=-E, Qz=2F;, Qs=2F], Ji=J;, K;=K;(50)

The Hamiltonian operator H , explicitly written in 4 X 4 supermatrix form, is given by

-2
I;[ B (% + 4a2<8282a+3)]12 ‘ 0 .
= P2 | 4021 ) (51)
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It is the Hamiltonian of the A/ = 4 super-Calogero model with D(2,1; «) invariance.
It contains a (purely bosonic) Calogero Hamiltonian in both its upper and lower diagonal
blocks. We recall that the Calogero Hamiltonian H¢ is given by
1 g?
He = —p* + =5.
c=3P + 7
The self-adjointness of the Calogero Hamiltonian H¢o depends on the value of the coupling
parameter g. We refer to the [34, 35] papers for a thorough discussion of this subtle point.
For our purposes it is important to note here the relation between the coupling constant g
and the scaling dimension parameter a. From [34] we know that H¢ is self-adjoint, provided
that the inequality g% > —% is satisfied. Under this condition the boundary value problem

HC¢]€ = Ek¢k7 st‘(o) =0,

gives a continuous positive spectrum, 0 < Ej < oo, the eigenfunctions and eigenvalues being

(52)

dr(y) = 2°7 3T (u + %)(ky)‘(“‘%)J (ky)y",  Ep= %kz,

n=3
for 1
9" = gplp—1). (53)
Let us set
40% +8a+3 40?2 -1

for the Calogero parameters entering, respectively, upper and lower diagonal blocks of the blocks
of the (51) Hamiltonian. It is quite rewarding that imposing, simultaneously, the g2, gj% > —%
condition, we end up with the a # 0, —1 inequality for the scaling dimension. The class of
exceptional D(2,1; ) superalgebras guarantee the existence of a well-defined Hamiltonian with
a continuous positive spectrum bounded from below.

At the special a = —% value the Calogero potential terms (in both upper and lower blocks)
vanish. Therefore, this special point corresponds to a free theory. At this given value, see [18],
we have D(2,1; —%) = D(2,1), so that the invariant superalgebra coincides with the classical
D(2,1) =~ osp(4]2) superalgebra.

We can express, from (53), gp, g¢ in term of their respective puyp, p1y parameters. From (54)

y, (o can be given in terms of . The result is the linear relations
po =75+ (+1), pp=g+a (55)

In quantum mechanics the continuity conditions are also imposed imposed on the probability
currents. Since the zero-energy wave functionis (up to a normalizing factor) ¢g(y) = y*, these
conditions imply that both py, 1y must satisfy puy, oy > % to ensure continuity at the origin. The
(55) equations show that any « # 0, —1 is suitable to fulfill these constraints.

As a final comment we point out that the energy levels of both bosonic (upper) and fermionic
(lower) blocks are doubly degenerated. This degeneracy is removed by taking into account the
hermitian operators jg, ﬁg which commute with H. Indeed,

are both diagonal and specify spin-like quantum numbers in the bosonic and fermionic sectors,
respectively. We can say that the bosonic states have % J-spin and 0 L-spin, while the fermionic

states have 0 j—spin and % [A/—spin .
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5.2 The N =2 (2,2,0) parabolic model with s/(2|1) invariance

The classical sl(2|1)-invariant action based on the parabolic D-module rep of the (2,2,0) su-

permultiplet is presented in Appendix B. Its quantization is performed with the techniques

previously outlined (introduction of the “constant kinetic basis”, Dirac brackets, etc.). For this

model it is convenient to express the two propagating bosons in terms of a complex field y.
We obtain the non-vanishing (anti)commutators

v oyl = ly.py) = ih,  {x.xT} =& (57)

The fermions can be expressed as y = % ( 8 (1) ) and XJr = \/E( (1) 8 >

Let us fix, for simplicity, A =1 and C = % The quantum operators Ql_, QQ_ can be written as

Q1:Z< XT OA>7 Q2:<AOT 13)7 (58)

where
Al = =0 (9, 1 19y + B81) | A= —de®0 (9, — 10+ BE) . (50)
are expressed in polar coordinates (y = ret, y* = re_w).
The quantum hamiltonian is
H=—1(2+10,+533) +iB%V 0.9, + B (60)
with o, the diagonal Pauli matrix. (2)5‘;;1)2 is the Ehrenfest term resulting from quantization.

The remaining quantum Noether charges are

Lo=tH+1(rd, +1), Li=H + it (rd, + 1) + 5, J = —19y — 210,
A1 . Al . 0 6i2)\6 ,\2 B A2 . 0 612)\9
Q+ - tQ_ - Zﬁ *6_12>\6 0 9 Q+ — tQ_ - ﬁ 6_2‘2)\9 O . (61)

The non-vanishing (anti)commutators, closing the sl(2|1) superalgebra are (m,n = 0, £1):
[ffna IA/m] =1 (m - n) ffm-l—na [i’07 Q(:ZI:] Q [i’ila QASZ] - $ZQ?I:7

7 Aa i A Aa A 7 Aa A 7 Ya A 7
[Jv Qj:] = §€abQ?|:a {Q:I:v Ql:)l:} = 20ap L1, {Q:I:v Qg:} = 20apLo, {Q:I:a Ql:)p} = 2€aJ,
(62)

l\.')\w

where IA/,l = ]:I, a,b=1,2 and €15 = —€91 = 1.
The eigenvalue equation HYg,, ., = Epn+YE,,, , for Byt > 0, produces a continuum spectrum
with eigenfunctions

VEmy(r,0) = Jm;l_m|(ar)eim0< (1) >,

wEm_ (7", 9) = J‘2>\7+1+m|(057”)€im9 < (1) ) , (63)

where J|M_m‘(ozr) and J‘Mer'(ar) are Bessel functions and a = v2F.
2 2
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To conclude the analysis of this model, we present it as a Supersymmetric Quantum Me-
chanics. Let us introduce

0% it X 32 ;AL
Q:Q——;ZQ—:<8§>7 QT:Q—;Q—:(} 8) (64)

We get {Q, QT} = 2H and Q% = (QT)2 =0.

From the expressions (59), it follows that QwEm, = VB 00, and QJ%EM = VB(n_on_-
Since m+2XA and m — 2\ need to be intege numbersr, ngm_ and QT¢Em+ belong to the Hilbert
space only if 2\ is an integer number. A supersymmetric pair is therefore only encountered for
the quantized values of the scaling dimension, either A € % +Zor \ € Z.

6 Superconformal Quantum Mechanics with DFF oscillator po-
tential terms: 1D D(2,1;«a) and 2D sl(2]|1) models

In this Section we quantize the worldline trigonometric o-models obtained from the N = 4
(1,4,3) and N = 2 (2,2, 0) supermultiplets (see Appendix B). They contain (besides a Calogero
potential) an oscillatorial (DFF term) which furnishes a discrete, bounded from below, spectrum.
The associated D(2,1;«) and, respectively, sl(2|1)superconformal algebras act as spectrum-
generating algebras for these models.

The D(2,1;«) (1,4, 3) trigonometric o-models shed some new light on the results of Calogero
[3] and de Alfaro, Fubini and Furlan [2]. Indeed, their Casimir energy linearly depends (in two
regions) on the scaling dimension parameter « (in contrast with the complicated dependence
expressed in terms of the Calogero coupling constant, see [34]).

Interesting features are also presented by the sl(2|1) (2,2,0) trigonometric o-models. The
scaling dimension A needs to be quantized (either A = § + Z or A € Z). At the special A = —1
value the ordinary two-dimensional oscillator (since the Calogero potential vanishes at this
special point) can be recovered. The Hilbert space of these class of models is decomposed
into an infinite direct sum of sl(2|1) lowest weight representations. An unexpected feature is
the existence of fermionic raising operators (not entering the si(2|1) superalgebra) which allow,
together with the sl(2|1) raising operators, for A = % + Z to recover the whole Hilbert space of
the theory from the single bosonic vacuum. The existence of these extra fermionic operators is
traced to the presence of a discrete symmetry.

6.1 The quantum D(2,1;a) trigonometric model from N =4 (1,4, 3)

The quantization of this model follows the same steps as the quantization of the osp(1]2)-
invariant trigonometric model described in Section 4. We end up, just like its N =4 (1,4, 3)
parabolic counterpart of Section 5, with (anti)commutators defining the the b & Cy superalgebra
(46). We set, for convenience and without loss of generality, the dimensional parameter w (its
presence in the equations can be restored by means of dimensional analysis).
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The quantum operators are (Fy is the Fermion Number operator introduced in (48))

~9 . ~9 2
. N A (14 2a) 1+2a
H = elt(g - z(yp-i-py) - g + 87?)2)]14 + 6” F47

o 9 2
. 9 (1+2a) (1+2a)
p = L by, LTy

5+ 82 M+ 42 T

~9 . ~9 2
3 a0 i g0 (14 20) _al+2a
K = e Zt(5+1(yp+py)_§+87:l)2)ﬂ4+ K 4:02 f4>
A i, 1. . (142« Xi X7 Xk
Qo = 62(X0P—§Xoy+ ( 5 )ez‘jkxng )s
A i i(14+2a)  XoXjXk
Qi = (sz S Xil ( 5 Cijk ?; )
2 it v . (142« i X i Xk
Qo = e 2(XoP+ 5Xo¥ + ( )eiijZXfX ),
2 6

2 it b (14 2« XoXi Xk
Qi = e 2(><ip+§xz-y— ( 5 )fijk I22),
- 1 . A
i = —z(§e¢ijij+xoxi),
A 1 o A
L, = _Z(§6iijij — XoXi)- (65)

The above operators realize the D(2,1; ) superalgebra (49) with the identifications
A=E-, D=H K=-EY, Qz=2F;, Qs=-2F;, Ji=J;, K;=K;(66)

The quantum Hamiltonian H=D is, explicitly,

P’ | 40%4+8a+3 | 3°

. B 4 fattoams 4 U] 0

D — (5 872 8)2‘ _ . ) (67)
+ %)

2 2
p 4da“—1
0 B+ %5

Both upper (bosonic) and lower (fermionic) diagonal blocks of D contain a Calogero Hamiltonian
with the DFF oscillatorial potential,

1
Hprr = ip + 5 +

g 7
= 68
- (68)

A detailed analysis of this Hamiltonian can be found in [3, 34]. Just like the parabolic case, the

inequality g2 > —% guarantees the existence of physically acceptable solutions. The boundary

value problem

Hprrdn = Enbn,  ¢n(0)=0, n=0,1,2,..., (69)

implies the discrete spectrum

1
Enzg(n—i—y—i—l), (70)
with eigenfunctions given (up to normalizion) by

v+i vl
bnly) = ¥+ 2 exp(— 4)13 (547 (71)
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In the right hand side LY stands for the modified Laguerre polynomials. The parameter v
entering the Casimir energy %(1/ +1) is

1
v = 5(1+8g?)%. (72)

Comparing equations (67) and (68) we see that g3, g¢ are again given by equations (54), so that
o # 0,—1 to ensure that both gg and gj% are greater than —%.

Since the Hamiltonian is a Cartan generator of the (65) superalgebra, the whole spectrum can
be recovered from a lowest weight representation of D(2,1; «), where the Qg’s are the lowering

and the Qp’s are the raising operators. The vacuum |A) is introduced from
Qs |A) =0, 8=0,1,2,3. (73)

From the definition of the Qg’s in (65) the four differential equations (73) can be recasted into
the single differential equation

(1 + 2a
Sz =0 (74)
Y
In position-space representation, (74) splits into two separate equations for the bosonic (4) and
respectively fermionic (—) subspaces,
doo,» 1 142«

= _—(y+
a0y 2(y ,

)00 (75)

The label o accounts, just as in the parabolic case, for the J ,ﬁ-spin degrees of freedom.
Integrating the above equation we get, up to normalization, the vacuum solutions

o2
oo = ch( 2 )exp(—z). (76)

This result is in agreement with (71) provided that we set
v =—(1+a), vE = (77)

This analysis forces us to conclude that two degenerate lowest energy vacua exist for o # —%.
They are bosonic for a < —% and fermionic for o > —%. This is implied by equation (71) which
tells us that any bosonic (fermionic) vacuum should be such that v, + 3 > 0 (vf + 5 > 0).

At the special a = —% value we have that D(2,1; —%) = D(2,1) = osp(4]2). The Calogero
potential terms vanish both in the upper and lower diagonal blocks. At o = —% we recover four
undeformed harmonic oscillator equations. All the states of the theory (including the minimal
energy states) are four times degenerated, with two bosonic and two fermionic states of same
energy.

The energy levels of the system are given by

1 1
Eb7n:§(n—a), Ef,n:§(n+a+1), n=20,1,2,.... (78)
By, (Ef,) are the energy levels of the bosonic (fermionic) states (they coincide for v = —1).

The energy of the degenerate vacua is

1 1
Eb,vac = —§Ct, (04 < _7) ; Ef,vac = i(a + 1)7 (a > _5) (79)
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the fermionic degenerate vacua (o < —%) Ej,, applies to the bosonic states, Ef,, to the fermionic
degenerate vacua.

The scaling dimension « can be regarded as an external control parameter of the theory,
so that the vacuum energy can be interpreted as a Casimir energy. The Casimir energy of the
(1,4,3) D(2,1; ) (un)deformed oscillator admits a very nice expression in terms of «, being
simply given by

1
Bue = 7(1+[2a+1)). (80)

This expression should be compared with the much more complicated expression of the
vacuum energy in terms of the Calogero coupling constant g and derived from (72). This result
suggests that the scaling dimension « has a more direct physical interpretation of the Calogero
coupling constant g. One should also note that, contrary to g, « directly enters the spectrum-
generating superalgebra D(2,1; ).

6.2 The N =2 (2,2,0) trigonometric model with s/(2|1) invariance
As in the parabolic case, we obtain from quantization the non-vanishing (anti)commutators

[Y", pys] = [y, py| = i, foxty = % (81)

with x = ch(g é)ande:\/c(%((l) 8).Weworkwithhzl,Czé,w:Z

The fermionic operators Q(il), I =1,2, entering sl(2|1) are

A . s 0 —A A i 0 A
QSE):ZG:Ft(Bi Oi)7 nglf):€$t<Bi 0i>a (82)

where, using the polar coordinates as in the parabolic case, we have

. ) 22 +1
A = ——g2M <ar—209+ + :tr),
2 r 2r

b ; 22+ 1
Be = Lt (g 4l 2010 (83)
2 T 2r
In the trigonometric case the Hamiltonian H is the Cartan generator D, given by
> Lo 1 L o (

In the r.h.s. o, is the diagonal Pauli matrix.
The three remaining bosonic symmetry operators which close the sl(2|1) superalgebra are

i eT2t 1 1 1 (22 +1) (2A+1)2 72
Ly = i [P+ 20+ =)+ i e g L 4 (o, + DT
1 iy O+ D0t 50g) i o0 + s g + (o + Dk,
. i 2\ —1
= —5]1289 — 4 Oy. (85)

One can easily check that the si(2|1) superalgebra is recovered from the (anti)commutators of
the operators (82,84,85).
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The differential equation for the radial part of the eigenfunctions ¢ = ¢"? Ry (r)es of D,
where e = (5 )ande_ = (7 ), is

1,5 1 1 22+ 1.4 72
_Z = —(m+ — - E = 0.
[ 2(8T + rar) + 5,3 (m 5 )+ 5 |R+(7) 0 (86)

E is the energy. In [3] the same equation is found and solved for the problem of three bodies
in a line. Furthermore, the issue of selfadjointness of the differential operator acting on R was

investigated in [36]; since (m + LQH)2 > 0, the existence of a selfadjoint extension for the
Halmiltonian (84) is ensured.

The requirement of single-valuedness for the operators Qg ) on the R2-plane implies, from the
exponents in (83), that the constraint 4\w = 2kx, with k integer, must be satisfied. Therefore
the scaling dimension A has to be quantized, either A = % 4+ 7Z or A = Z. We discuss in detail
the half-integer case, with side remarks about the models with integer values of .

One should note that at A = —% one obtains (two copies of) the Hamiltonian of the unde-
formed two-dimensional bosonic oscillator.

For half-integer A the Qg ) operators act as raising/lowering operators. Let us take, e.g., QS_E );
it follows, from the commutators [D, Qf )] = :FQf ), that an energy eigenstate ¢ with eigenvalue
E,, is mapped into an eigenstate Qg )w with eigenvalue E, F 1 (provided that E, F1 # 0):

ﬁ¢ =E — DQE?#’ = (En + 1) QEE)¢

Therefore, starting from a lowest weight state satisfying Q(f)¢ = 0, an infinite tower of
higher energy eigenstates are constructed by repeatedly applying Q(f) The solutions of the

lowest weight equation Qf)w = 0 are given by the eigenfunctions

¢m+ (7“, 0) = Am’l"(m_ 2>\2+1)6_T2€im9 < (1) > 5

b (10) = By (P (1), ")

where A,,, By, are normalization constants given by

a 1 2 1
Am — 2%77 oa=m — A“_ ’
vrl(a+1) 2
1 22+ 1
By = 25—~ B=—(m+ + ) (88)

aT(B+1)

and I' is the gamma function.
In order to have finite lowest weight eigenfunctions at the origin, the integer m is constrained.
From the bosonic states the necessary condition is

22 +1
89
> 2L (59)
while from the fermionic states the necessary condition is
220 +1
m < - Rk (90)

- 2
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The energy eigenvalue equation of the bosonic and fermionic lowest weight eigenstates is respec-
tively given by

. 22 +1

D¢m+ = (1 +m — ;_ )wm—i-a

. 220 +1

D = (1= (m+ =)o (o1)

Two minimal vacua, one bosonic and the other fermionic, are obtained with vacuum energy 1.
They are recovered from the “saturated” bosonic and fermionic lowest weight eigenstates with,

respectively, m = % and m = —Q/\TH.

The lowest weight condition obtained from the lowering operator QSLl) (Q(j)w = 0) produces
the same set of lowest weight states (87). The application of the raising operator Q(_l) produces,

up to a phase, the higher energy states obtained from the raising operator Q(_z).

The theory therefore possesses a degenerate vacuum, one vacuum state being bosonic, the
other one fermionic. As discussed in Appendix A it is possible to impose a superselection rule,
imposed by a projector, which selects half of the states being physical. The superselected theory
possesses a unique bosonic vacuum and, for A = —%, its spectrum coincides with the spectrum
of the ordinary two-dimensional (undeformed) oscillator, which can therefore be recovered as
the superselected, A = —%, sl(2|1) acting on (2,2,0), quantum trigonometric model.

We conclude this Section with two important remarks. Contrary to the two vacua of the (not
superselected) A = % + Z theory, the A € Z quantum deformed oscillators possess four vacuum
states (two bosonic and two fermionic states). The construction of the Hilbert space follows the
same lines as the half-integer A case. The main difference lies in the fact that the necessary
conditions (89) and (90) for the integer m cannot be satisfied as equalities when A € Z. It is
beyond the scope of this work to present the detailed analysis of the A € Z deformed oscillators,
which will be presented elsewhere.

The second important remark concerns the fact that, for the superselected A = % + Z theory,
the Hilbert space cannot be recovered by repeatedly acting with the sl(2|1) raising operators
from the vacuum state. The Hilbert space is decomposed (this point is discussed in Appendix
A) in a infinite direct sum of the sl(2|1) lowest weight representations. This is in sharp contrast
with respect to the one-dimensional harmonic oscillator, whose single irreducible lowest weight
representation of the osp(1]|2) spectrum-generating superalgebra allows to recover the whole
Hilbert space.

One can note, however, that it is possible to construct an extra set of fermionic symmetry

operators, @ﬁf ), which also act as raising/lowering operators. The construction goes as follows.
At first a discrete symmetry operator C, playing the role of a charge conjugation operator, is

introduced. It is given by
. 0 et (2A+1)0
¢ = ( —i2A+1)0 0 > : (92)

One can verify that [D,C] = 0 and that C? = I. This operator also commutes with the L.
operators in (85). It does not commute, however, with J and the sl(2|1) fermionic operators.
With the help of C' we can introduce the new symmetry operators

AAM A AL . it 0 Cx AA2 A AR s 0 Cx
CQiC_Q:I: =1e <_D:|: 0 ) CQj:C_Q:I: =€ D:t 0 ) (93)
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where
_ e e 22 +1
Ct 26 (Or Tag o +7),
. ) 2 1
D = — e (0, 4 g, AL, (94)
and
CIC =T=-L19y— 230, (95)

As discussed in Appendix A (where a schematic presentation in diagrams, the dashed lines, of
the action of the @i operators is given), @i act as raising/lowering operators for the eigenstates
of the Hilbert space of the theory. Any given eigenstate can be reached by repeatedly applying
to the vacuum bAoth sets of er,@i raising operators.

In terms of C' we can also introduce the new quantum operators

J=J+7T=-idg— o, Ny=o0,=J-17, (96)
which allows us to define the new quantum numbers (used in Appendix A, see Figure 4):

ﬁ|n7j7€>:(n+]‘)‘naja€>u j|n7j7€>:j‘naja€>a 0z|n7j76>:€|n7j76>~ (97)

7 Conclusions

In this paper we presented a framework for quantizing the large class of classical worldline
superconformal o-models derived from supermultiplets. These systems are defined in [25] (for the
parabolic case) and [1] (for the trigonometric case). We applied the quantization prescription to
derive explicitly the N =4 (1,4, 3) and the N' =2 (2,2,0) quantum superconformal mechanics
(with D(2,1;«) and sl(2|1) dynamical symmetry, respectively). The parameter a # 0,—1 is
the scaling dimension of the (1,4, 3) supermultiplet, while the scaling dimension of the (2,2,0)
supermultiplet is quantized and given by A = % +Zor \ € Z.

The results concerning the trigonometric models are particularly relevant. These systems are
only “softly supersymmetric”, see the discussion in Appendix C. As such they have not received
much attention like the parabolic models. The trigonometric models correspond to supercon-
formal mechanics in the presence of the DFF damping oscillatorial term; stated otherwise, they
are oscillators where Calogero potential terms are possibly present. Their spectrum is discrete
and bounded from below.

For the (1,4, 3) trigonometric models (i.e., the D(2,1; a) oscillators) we derive the following
nice formula for the vacuum energy:

1
Buae = 7(1+[20+1)). (98)

If « is interpreted as a physical external parameter, then (98) can be interpreted as a Casimir

energy.
Concerning the (2,2,0) trigonometric models, at the special value A = —% one recovers,
after imposing a superselection rule derived by a projector, see Appendix A, the spectrum of
the ordinary two-dimensional oscillator.
It has been noted very recently, see [37], that the ordinary two-dimensional quantum oscilla-

tor possesses an sl(2|1) dynamical symmetry. As a byproduct of our framework we can further
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point out that the spectrum of the two-dimensional oscillator is decomposed into an infinite
direct sum of sl(2|1) lowest weight representations.

In our approach the existence of sl(2|1) as a dynamical symmetry, not only of the undeformed
A = —1, but also of the deformed (A € 3 +Z and A\ € Z) two-dimensional oscillators, is a
natural consequence of the construction of these models from the ' = 2 (2,2, 0) (trigonometric)
supermultiplet. The decomposition of the spectrum in a direct sum of sl(2|1) lowest weight
representations comes as a bonus and is not surprising. What is really puzzling and unexpected
is another feature, discussed at length in Section 6 and in Appendix A and C, the presence
of the extra fermionic symmetry generators which act as raising and lowering operators. They
allow to reach each state belonging to the Hilbert space of the two-dimensional oscillator by
repeatedly applying the raising operators to the vacuum state.

This result is very puzzling. It is quite possible that, in order to recover the spectrum of the
two-dimensional oscillator from a single, irreducible, lowest weight representation, one needs to
extend the concept of superalgebra; possibly by making use of the notion of generalized super-
symmetry. In a related context, the appearance of a generalized superalgebra as a symmetry of
a dynamical system has been noted in [38].

In a forthcoming paper we will present a detailed investigation of the puzzling properties of
the deformed A € % + Z and A € Z two-dimensional oscillators.
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Appendix A: Diagrams of the spectrum-generating superalge-
bra for the N’ =2, (2,2,0), A\ = % + 7 trigonometric cases.

It is convenient, for the two-dimensional cases based on the N' = 2 (2,2, 0) trigonometric reps,
to encode in diagrams the action of the raising and lowering operators of the spectrum-generating
superalgebra. We explicitly present three such diagrams, Figures 1, 2 and 3, respectively asso-
ciated with three values of the scaling dimension, A = %, A= —%, A= —%. In a further diagram
the general features of the A\ = % + Z case are presented.

In the diagrams the bosonic (fermionic) states are denoted by white (black) dots. Grey dots
denote the presence of both bosonic and fermionic states. The vertical axis represents the energy
level, labeled by n, while the horizontal axis represents the angular momentum, labeled by m.

We denote with € the eigenvalues of the Fermion Number operator (¢ = +1 for bosons, ¢ = —1

for fermions). Solid (dashed) lines represent states connected by @S_LI ) (respectively, @S_LI )) raising
and lowering operators with I = 1,2, see (82) and (93) (for simplicity we drop here the indices).

The si(2]|1) lowest weight states appear, in the diagrams, as the dots where the solid lines
originate (in the upward direction). In Figure 2 and 4 the existence of such lowest weight states
is not immediately evident, this is however just a side effect of the condensed notation used (a
grey dot being associated with two states).

The operators @S_Ll), @g) (and, similarly, @ﬁ),@(j)), applied to a |n,m,€) state which does
not coincide with a lowest weight state produce, apart a normalization factor, the same state.
We can write, for I = 1,2,

Q\(il) ’Tl, m, E> X |n:|:1am_€2>‘v _6>7

@ﬂf) In,m,e) o< |nFlm—e2(A+1),—€). (A.1)

From the three diagrams, Figures 1, 2 and 3, we can immediately read several important
features. In particular, in all three cases, the n > 0 higher energy states are produced via
repeated applications of the Q’s, Q’s raising operators from the two (one bosonic and one
fermionic) n = 0 fundamental level states. As a corollary, we need both types (@’s, Q’s) of
raising operators to recover the Hilbert space of the associated model. This means, stated
otherwise, that the Hilbert space is reducible with respect to the sl(2|1) superalgebra defined

by the @g ) operators alone. In terms of a s/(2|1) decomposition, an infinite tower (one state at
each given integer value n) of lowest weight states need to be introduced to recover the Hilbert

space of the theory. Therefore, in order to have an irreducible description, the @SFI) operators
need to enter the picture.

One shoud note that the A = —% case corresponds to the undeformed (namely, without the
extra Calogero potential term) two-dimensional harmonic oscillator. The Hilbert space defined
by Figure 2 contains a double degeneracy. Two eigenstates (one bosonic, the other one fermionic)
are associated with each n, m pair of eigenvalues. The introduction of a suitable projection allows
to remove the double degeneracy and recover the Hilbert space of the ordinary two-dimensional
harmonic oscillator. The superselection rule is defined in terms of the projection operator P
(]52 =1I), given by

N

P = Npe™, (A.2)
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Figure 1: A = % diagram of @’s, Q’s raising and lowering operators.

where Ny is the fermion number operator and H = D is the Hamiltonian (its eigenvalues are
the non-negative integers n). The

Plw) = |¥) (A.3)

superselection rule implies that the Hilbert space of the superselected theory is given by bosonic
states at even energy eigenvalues (n = 2k, with £k = 0,1,2,...) and fermionic states at odd
energy eigenvalues (n = 2k + 1).

The superselection removes, in particular, the degeneracy of the vacuum, the single vacuum
state being now bosonic. The spectrum of the ordinary two-dimensional harmonic oscillator is
therefore recovered from the superselected N =2 (2,2,0) model at scaling dimension \ = —%

For any half-integer value A\ = 2 + Z the Hilbert space of the two-dimensional deformed
(due to the presence, besides the quadratic potential, of a Calogero potential term) harmonic
oscillator, can be formally recovered from the A\ = —% Figure 2 diagram, by replacing the angular
momenturn m with the j eigenvalues of the J operator introduced in (96) (this is also true for
the A = 5, g cases explicitly introduced in Figure 1 and 3).

Let us introduce the basis defined by the quantum numbers

Dln,j,e) = (n+1)|n,je); Tlnje)=jlnje),(j €Z); Nyln,je)=eln,je€),(e=%1).

In this basis the action of Qg), @g:[ ) on a state which does not coincide with a lowest weight
state, reads as follows

A . . —(I . .
QEI:I) ]n,],e)oc]nqil,]—i—e,—e), Qgt)‘n7]7€>0<’n:|:17]_67_6>' (A4)

The X = % + Z associated diagrams are presented in Figure 4.

This makes clear that the superselection rule induced by (A.2) can be imposed on any
A= % + Z deformed oscillator, guaranteeing in all these cases the existence of a Hilbert space
with a single bosonic vacuum.
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Figure 4: the A = % + Z general diagram.
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Appendix B: The classical (2,2,0) si(2|1)-invariant models.

We present, for completeness, the construction of the si(2|1)-invariant classical actions ob-
tained from, respectively, the parabolic and the trigonometric D-module reps acting on the
(2,2,0) supermultiplet.

The parabolic D-module rep is given by the transformations

. . 220+1
Lyx;, = t" (t:Ei + (TL + 1) )\SL‘Z) , anz = tn(t¢i + (n + ].) ( 5 )1/11), n=0,=%£1;
22 —1

Jui = —Aeija;, Jvi = ——5 €,

141 ==t .
Qlia;, =t 2 ﬁz‘j%‘, Qil/)l = —it 2 € (tl’j + (1 + 1) )\xj) ,

141 ==t .
Qixi =1t 2 1y, Qiy; =it 2 (tiy+ (14 1) A\xy), (B.1)

where the z;’s (i = 1,2) are the propagating bosons and the 1;’s the fermionic fields.
The above transformations close the sl (2|1) superalgebra.
The sl(2|1)-invariant action is obtained from the Lagrangian £ = QiQL(%Feijwiﬂ)j), with

the operators Qi, QL acting on the prepotential F = C (mlxl)_% (C is a normalization con-

stant). Explicitly, the invariant action of the classical (2,2,0) parabolic model is
S = [dtL = [ dt(F(iit; — ivhiab;) — iFdah0;). (B.2)

The trigonometric D-module rep is given by the transformations

—inwt —inwt
Lpx; = e_T (@i — inAwz;) Lnipi = e_iw (¢ — m(2)\2+ 1)W¢i)> n =0+l
Jui = —Aeijaj, Jipi = —2)\721%%,
W eFist
Qi% _ eil:zateijwj, Qiﬂ)z = Téij (i“j F i)\w:l:j) ,
) JFi%t
Qiz; = T3y, Qhhi = —— (i1 F idway). (B.3)

Without loss of generality we can set w = 1. The classical action, sl(2|1)-invariant under the
(B.3) trigonometric transformations, is therefore given by

S = [dtL = [ dt(F(isi; — i) — iFyigad; + ON2 (zim:)” 7). (B.4)

Appendix C: On the “soft” supersymmetry of the oscillators.

We make here some comments on the role of superalgebras applied to oscillators (either
the ordinary quantum oscillators or the oscillators which are “deformed” by the presence of a
Calogero potential term).
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The starting point is the famous work of Wigner [39]. In modern terms, after the concept
of superalgebra was introduced in mathematics, Wigner’s results can be reinterpreted (see [40])
according to the following lines. For the ordinary quantum oscillator, with creation/annihilation
operators a, a' (satisfying [a,a!] = 1) and symmetrized Hamiltonian H = {a,a'}, we can assign
odd-grading to the operators a, al, so that they belong to a set of 5 operators, a, al, a2, (aT)2, H =
{a,a'}, closing the osp(1]2) superalgebra under (anti)commutations. The last three (bosonic)
operators close the sl(2) subalgebra. Under this construction we have an alternative point of view
for describing the computation of the the spectrum of the ordinary (one-dimensional) harmonic
oscillator: we can state that, instead of deriving it from the Fock vacuum |0), annihilated by a
(al0) = 0), the spectrum is obtained from a lowest weight representation of osp(1/2), the Hamil-
tonian being the Cartan element. By adopting this viewpoint the superalgebra osp(1]2) becomes
a spectrum-generating superalgebra for the ordinary quantum oscillator, with its Hilbert space
being recovered from a single, irreducible, osp(1]2) lowest weight representation.

One should note that the bosonic sl(2) subalgebra also acts as a spectrum-generating algebra
for the harmonic oscillator. The Hilbert space of the harmonic oscillator is, however, reducible
under the sl(2) decomposition. It is given by the direct sum of two irreducible sl(2) lowest-
weight representations. The first lowest state is the vacuum of the theory (proportional to
the gaussian e~ under proper conventions and normalization). The other lowest state is the
first excited state, with eigenfunction proportional to ze~® and having odd-parity with respect
to the = — —az transformation. The two si(2) lowest weight reps correspond to, respectively,
the even-parity and the odd-parity energy eigenstates. The role of the fermionic operators in
0sp(1]2) consists in connecting energy eigenstates of even and odd parity.

After the introduction and the subsequent classification of simple Lie superalgebras [41, 42],
the Wigner’s approach was advocated in [43], with special emphasis on parastatistics, prompting
a series of investigations on lowest weight representations of simple Lie superalgebras (for a recent
review see, e.g., [44]).

On a separate development the DFF “trick” of introducing oscillator damping potentials in
conformal mechanics relates oscillators (with/without the Calogero potential term) to conformal
algebras.

It was recognized in [28] that, due to the DFF “trick”, the introduction of new potentials for
conformal mechanics became possible. The two aspects, superalgebra versus conformal algebra,
were reconciled in [1]. The notion of parabolic versus trigonometric/hyperbolic D-module reps
of superconformal algebras was pointed out, with the latter class describing the (deformed or
undeformed) oscillators and bounded from below potentials in the trigonometric case.

The main property shared by the two big classes of superconformal theories, parabolic versus
trigonometric, is that at the classical level their respective actions are superconformally invariant.
Concerning their differences:

i) the parabolic models are, both classically and quantum, superconformal and supersymmetric.
The supersymmetry implies the existence of a symmetry operator @ which is the “square root”
of the Hamiltonian H, namely Q% = H;

i1) the trigonometric models, on the other hand, despite being superconformally invariant, are
not supersymmetric. In this case symmetry operators Q, Z exist such that Q> = Z. The key
point is that the operator Z does not coincide with the Hamiltonian: Z # H.

One can easily say that the trigonometric models are “intermediate” between the supersym-
metric and the non-supersymmetric theories. This “intermediate notion of supersymmetry”,
namely Q? = Z # H, has no special name in the literature. In [1] the notion of “weak super-
symmetry” was employed, borrowing the term from a construction described in [45] which shares
a similar feature. The use of the term “weak supersymmetry”, however, could be misleading
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since the models in [45] are not based on superconformal algebras. In that paper a “weak su-
persymmetric oscillator” is discussed that has no relation with the oscillators derived from the
trigonometric D-module reps of superconformal algebras.

For this reason it seems more appropriate to denote this important class of trigonomet-
ric models (which include, as shown in this paper, the ordinary one-dimensional and two-
dimensional harmonic oscillators) as “softly supersymmetric”. As far as we know the term
“soft supersymmetry” has not been employed in a different context, making this term both
suitable and available to describe the special properties of the trigonometric superconformal
mechanics.

The softly supersymmetric trigonometric models are characterized by
i) classical superconformal invariance of the action;
i1) spontaneous breaking of the superconformal invariance. Indeed, in the simplest application,
the Fock vacuum |0) of the harmonic oscillator is annihilated by a and not by the hermitian
operator a + a': (a + a')|0) # 0;
i11) in the quantum case the role of the superconformal algebra is that of a spectrum-generating
superalgebra.

Concerning the last point, we indeed proved, see Appendix A, that the spectrum of the
ordinary two-dimensional oscillator is decomposed into an infinite tower of s/(2|1) irreducible
lowest weight representations. The puzzling presence of the extra fermionic generators (93) which
connect eigenstates belonging to different lowest weight reps reminds the role, just discussed
above, played by the osp(1|2) fermionic generators in connecting the two sl(2) lowest weight
reps of the one-dimensional oscillator.
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