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Exact solution of a generalized two-sites Bose-
Hubbard model

Gilberto N. Santos Filho

Abstract. I introduce a new parametrization of a bosonic Lax operator
for the algebraic Bethe ansatz method with the gl(2)-invariant R-matrix
and use it to present the exact solution of a generalized two-sites Bose-
Hubbard model with asymmetric tunnelling. In the no interaction limit
I show that the Bethe ansatz equations can be written as a S ! sphere,
where N is the total number of atoms in the condensate.

1. Introduction

The first experimental verification of the Bose-Einstein condensation (BEC)
[TH3] occurred more then seven decades after its theoretical prediction [41[5],
and a great deal of progress has been in the theoretical and experimental
study of this many body physical phenomenon [6HIT]. In this direction the
algebraic Bethe ansatz method has been used to solve and study models that
may describe BEC [12HI4]. The quantum phase transitions and classical anal-
ysis of some of these models have been studied in [I5HIT7]. We are considering
here a generalized issue of the two-sites Bose-Hubbard model, also known
as the canonical Josephson Hamiltonian [7], that has been an useful model
in understanding tunnelling phenomena using two BEC [I8-24]. The model
that we will study is more general that the model [7}25] in the sense that we
introduce the on-well energies and asymmetric tunnelling. Here we will dis-
cuss its integrability and exact solution. The generalized model is described
by the Hamiltonian

2 2 2
H = Z KijNiNj—Z(Ui_ﬂi)Ni_ZQiJ&IdJ’ (1)

i,j=1 i=1 i#£j

The author acknowledge Capes/FAPERJ (Coordenagao de Aperfeicoamento de Pessoal de
Nivel Superior/Fundagdo de Amparo & Pesquisa do Estado do Rio de Janeiro) for financial
support.


http://arxiv.org/abs/1610.07111v1

CBPF-NF-008/16
2 Gilberto N. Santos Filho

where, d;r (a;), denote the single-particle creation (annihilation) operators and
N; = &jdi are the corresponding boson number operators in each condensate.
The boson operator total number of particles, N = Ni + Ns, is a conserved
quantity, [H, N] = 0. The couplings K;;, with K;; = Kj; (i # j), provides
the interaction strength between the bosons and they are proportional to
the s-wave scattering length, ;; are the amplitude of tunnelling, u; are the
external potentials and U; = K;; — k; are the on-well energies per particle,
with k; the kinetic energies in each condensate.

The Hamiltonian (D) is invariant under the discrete Zg mirror trans-
formation, 4; — —a;, and under the global U(1) gauge transformation,
aj — €'®a;, where « is an arbitrary c-number and, d; — e_m&;r., j=12.
For a = m we get again the Zy symmetry.

For the particular choice of the couplings parameters we can get some
Hamiltonians, as for example by the choices K;; = %, Kig = Ko = —%,
1= —po = p, Uy =0, and Q15 = Qo1 = %’ we get the canonical Josephson
Hamiltonian studied in [7]. The case with K19 = Ko1 = 0, K;; = U; = U,
w1 = —pe = p, and Q9 = Qo1 =t was used to study the interplay between
disorder and interaction [26]. For these models we have symmetric tunnelling
if Ay = 0 and when we turn on Ay we break the symmetry. For the symmetric
case we also can put g1 = ps = p and change the deep of both wells at the
same time. In the antisymmetric case U — py # Us — pio we have asymmetric
tunnelling with the bias of one well increasing the on-well energy. In this
case it is called a tilted two-wells potential [27] and an experimental set up
was made to study the distillation of a Bose-Einstein condensate, providing
a model system for metastability in condensates, a test for quantum kinetic
theories of condensate formation [28] and atomtronic devices [29,[30]. The
on-well energies is determined by the internal states of the atoms in the
condensates and/or by the kinetic (thermal) energy of the atoms.

In the Fig. [l we represent the two BEC by a two-wells potential for
the case Uy = Uz and Ap # 0, with asymmetric tunnelling Q15 # Q5. The
tunnelling amplitudes €;; are related to the barrier height V; [31].

2. The algebraic Bethe ansatz method

The spectrum of the Hamiltonian (), with U; = 0 and symmetric tunnelling,
has been appeared in different papers [24,25/[832H35] and the Bethe states
n [36]. To be complete I will shortly describe the algebraic Bethe ansatz
method [25,[33] and present the exact solution for the general case of U; # 0
and asymmetric tunnelling Q12 # Q2. We begin with the g¢l(2)-invariant
R-matrix, depending on the spectral parameter wu,
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with b(u) = u/(u+n), ¢(u) = n/(u+n) and b(u) + c(u) = 1. Above, 7 is an
arbitrary parameter, to be chosen later.
It is easy to check that R(u) satisfies the Yang-Baxter equation

R12 (u - U)R13 (U)R23 (U) = R23 (U)R13 (U)R12 ('LL - U), (3)
where Rj,(u) denotes the matrix acting non-trivially on the j-th and the
k-th spaces and as the identity on the remaining space.

Next we define the monodromy matrix 7'(u),

2 i (u) ; (u)
T(w) = 2 p 4

() < C(u) D(u) )’ )
such that the Yang-Baxter algebra is satisfied

Ria(u — v)T1(u)Ta(v) = To(v)Ti (u) Ria(u — v). (5)
In what follows we will choose a realization for the monodromy matrix
7(T(u)) = L(u) to obtain a solution for the two-sites BEC model (). In
this construction, the Lax operator fj(u) have to satisfy the algebra

ng(u — v)fjl(u)fjg(v) = ﬁg(v)ﬁl(u)Ru(u - U), (6)
where we use the notation,
Liy=Lu)®I and Ly=1® L(u). (7)

Then, defining the transfer matrix, as usual, through

i(u) = Tr 7(T'(u)) = 7(A(u) + D(u)), (8)
it follows from (Bl that the transfer matrix commutes for different values of
the spectral parameter; i. e.,

(v)] =0, Y u, v. 9)

FiGURE 1. Two-wells potential showing the asymmetric
tunnelling for the case Uy = Uz, Ap # 0 and barrier height
Vo.
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Consequently, the models derived from this transfer matrix will be integrable.
Another consequence is that the coefficients Cy in the transfer matrix £(u),

= Zékuk, (10)
k

are conserved quantities or simply c-numbers, with

[C;,C] =0, Vi, k. (11)

If the transfer matrix #(u) is a polynomial function in wu, with k& > 0, it
is easy to see that,

. 1 d¥i(u)
Co=1(0) and Cj = B odE |

We are using a new solution of the equation (@), a new parametrization
of a well known [24)[33] Lax operator,

L;(u) = . =1,2, 13
() ( Bial oiBivin 1 ' (13)

for the boson operators &j, a;, and N; and with Aivi = 1. The parameters «;

and §; are arbitrary. These operators obey the canonical boson commutation
rules

(12)

(G, a;] = [@I,@}] =0, [, af] = 651, (14)

[N, a5] = —6ija5, [N, al] = +d;;al. (15)

The I-operator is the identity operator.
Using the co-multiplication property of the Lax operators (I3) we get
the following realization for the monodromy matrix,

(T (u)) = Ly(u+ w1 ) Lo(u — wy), (16)
whose entries are,
m(A®u) = MAa(u+wi)(u—w2)l + AAa(u + wi)nNo
+ Mda(u —wo)nNy + M Aan® Ny Ny + focaban, (17)
m(B(u)) = Mas[(u+wi)l +nNilas 4+ arooBoyen Ly, (18)
7(C(w) = Bid[(u—wa)l +nNslal + a1 fominad, (19)
m(Dw) = Biasalas + arasfrfamiyan 1. (20)

Hereafter we will use the same symbol for the operators and its respective
realization, so we define 7(O(u)) = O(u) for any operator in the entries of
the monodromy matrix ().
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The transfer matrix £(u) is,

tw) = Ma(u+w)(u —wg)f+/\1)\2(u+w1)77]\72
+ AMda(u — w)nNy 4+ A Aen® NNy —|—52041&;&1
+  Brogalag + arasBifayiyen 2. (21)
We can write the transfer matrix 2I) using (I0)
t(u) = Co+Ciu+Cou?, (22)

with the conserved quantities

Co = /\1/\2(W1N2 - w2N1)77 + )\1)\27]2N1NQ

+  Baandban + Brasdlas + (arasBifoyiven 2 — MAewiws)l, (23)
G = MAg[(wi —wo)l +1N], (24)
Co = Mol (25)

We can rewrite the Hamiltonian [[] using these conserved quantities,

H = &Co + &CF + &0, (26)
with the following identification for the parameters,
& = —&la10aBiBayivan 2 — wiws)
— &1(wr — wa)? A1 )g, (27)
Kii = K=&\ (28)
Ko = Ko = (&4 26 M)\ A, (29)
pr— U = [26 1 w1 — (§o + 261 A1 A2)wa] A Aan, (30)
2 — Uz = [(&o + 2&1 A1 A2) w1 — 261 M1 Aawa] A1 Aam, (31)
Qe = —&obiaz, (32)
Qo1 = —&oPaan, (33)

with & £0, i =0,1,2.
Now it is straightforward to check that the Hamiltonians (1) and (26])
are related to the transfer matrix #(u) @2I) through

H = &i(u) + 667 — &Cru — (§ou® — &)Ca, (34)

and from 26 or B4 that [H,#(u)] = 0. Notice that the spectral parameter u
appearing in the Hamiltonian (B34)) is canceled. The Hamiltonian parameters
in (@) or (34) are real numbers. The transfer matrix parameters in (ZI)) can
be complex numbers, but in this case the transfer matrix is not Hermitian.
We will only consider the Hermitian case.

We can apply the algebraic Bethe ansatz method, using the Fock vac-
uum as the pseudo-vacuum |0) = |0); ® |0)2, to find the BAE

N
M A2[v? + (w1 — wo)v; — wiws] _ H v —v; — 1

. ij=1,....N, (35
a0 Bay1v2m 2 v — v+ 1 g (35)

J#i
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and the energies of the Hamiltonian

E({v}) = &Mafu? + (w1 — wo)u — wiws] H (1 - )

v; — U
i=1 v

+ SN (w1 —wa +N)? = A da(wr — wo + N )u

N
— oM hat® + EM A2 + Garan B Boyiren H (1 - ) :

. Vi —Uu
=1
(36)

Fortunately this expression is a function of the spectral parameter u, which
can be chosen arbitrarily. For asymmetric tunnelling, Q12 # 1, we can
consider a1 32 = 1 and Brae = k1 and in the limit of no interaction, K;; — 0
with < 1, we can write the Bethe ansatz equation (33]) as

N

Z {vi + %(m - wz):|2 = R%. (37)

=1

The Eq. (37) is the equation of a complex manifold in CV with

1 + A2\2
Ry = \/|:Z(w1 —w2)?+ W] N. (38)
1A%

If all Bethe roots {v;} are real numbers, in RY the surface is a SV ~1 sphere
with radii Ry and center in

1
vi=—5@—w) Vi=1l..N. (39)

For u = 0 and K;; — 0 we can write the eigenvalues as

E({vi}) = &AA (w1 — w2 +1N)? + &M + &o(kmre — MAswiws)
N
1

— A1 —. 40

Eo( A Aawiws + H’Yl’Yz)n; i (40)

When we consider symmetric tunnelling we just put kK = 1 and w; = —w»

to get
E({vi}) = &AXIN3(2w1 +0N)? + &Mk + Loy + Aidew?)

N
1

— Gmre = Adawiny e (41)
i=1 "
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3. Summary

I have introduced a new parametrization of a bosonic Lax operator and explic-
itly calculated the spectrum of a generalized two-sites Bose-Hubbard model
with asymmetric tunnelling by the algebraic Bethe ansatz method using the
gl(2)-invariant R-matrix and showed that in the no interaction limit the
Bethe ansatz equations can be written as a SN ~! sphere in RV, where N is
the total number of atoms in the condensate.
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