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Abstract The symmetries of the Lévy-Leblond equation are investigated beyond the
standard Lie framework. It is shown that the equation has two remarkable symme-
tries. One is given by the super Schrödinger algebra and the other one by a Z2×Z2
graded Lie algebra. The Z2×Z2 graded Lie algebra is achieved by transforming
bosonic into fermionic operators in the super Schrödinger algebra and introducing
second order differential operators as generators of symmetry.
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1 Introduction

The purpose of the present work is to show that a Z2×Z2 graded Lie algebra is a
symmetry of a simple equation of physics, the Lévy-Leblond equation (LLE), which
is a non-relativistic wave equation of a spin 1/2 particle [9]. In the process to prove
the Z2×Z2 symmetry we also show that LLE has a supersymmetry given by the
N = 1 super Schrödinger algebra (see [3] and references therein).

Z2×Z2 graded Lie algebras (introduced in [12, 13], see also [14]) are natural
generalizations of Lie superalgebras. We present their definition: Let g be a vector
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space over C or R with a Z2×Z2 grading structure, namely g is the direct sum of
four distinct subspaces labelled by an element of the Z2×Z2 group:

g= g(0,0)+g(0,1)+g(1,0)+g(1,1). (1)

For two elements a = (a1,a2), b = (b1,b2) ∈ Z2×Z2, we define

a+b = (a1 +b1,a2 +b2) (mod(2,2)), a ·b = a1b1 +a2b2 (2)

Definition 1. If g admits a bilinear form J , K : g× g→ g satisfying the following
three relations, then g is called a Z2×Z2 graded Lie algebra:

1. Jga,gbK⊆ ga+b,
2. JXa,XbK =−(−1)a·bJXb,XaK,
3. JXa,JXb,XKK = JJXa,Xb,K,XK+(−1)a·bJXb,JXa,XKK,

where Xa ∈ ga.

Two sub superalgebras exist (they are g(0,0) + g(0,1) and g(0,0) + g(1,0)). This fact
plays a crucial role when the symmetry of the LLE is identified with a Z2 ×Z2
graded Lie algebra.

In contrast to ordinary Lie algebras and superalgebras, the number of papers in
the literature discussing physical applications of Z2 ×Z2 graded Lie algebras is
limited [8, 10, 15, 17, 18]. The equation discussed in this work is both simple and
fundamental. Even so, we naturally encountered this unusual algebraic structure.
This would suggest that Z2×Z2 graded Lie algebras are natural objects in the in-
vestigation of symmetries.

The plan of this paper is as follows. In the next section we introduce the LLE and
present its symmetries. We show that the LLE has a super Schrödinger symmetry.
In §3 the supersymmetry is enhanced to a Z2×Z2 graded Lie symmetry.

2 LLE and its (super)symmetries

The LLE here considered is a non-relativistic wave equation for a spin 1/2 free parti-
cle in 3D space. The wavefunction is a four-component spinor ψ(x)= T (ϕ1(x),ϕ2(x))
where ϕa is a SU(2) spinor and x = (t,x1,x2,x3). We use the following form of LLE
[4]:

Ωψ(x) = 0, Ω =−2iα∂t + iγ j∂x j +2mβ , (3)

where the sum over the repeated index j = 1,2,3 is understood; γµ ,α,β are 4× 4
Dirac γ-matrices defined by

{γµ ,γν}= 2gµν , (gµν) = diag(+,−,−,−), µ,ν = 0,1,2,3 (4)

and
α =

1
2
(γ0 + γ4), β =

1
2
(γ0− γ4), γ4 = γ0γ1γ2γ3. (5)
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One may take any four dimensional representation of the γ-matrices. We do not dis-
tinguish upper and lower indices since we are working in a non-relativistic setting.
LLE is the square root of the free Schrödinger equation, namely Ω 2 gives the free
particle Schrödinger operator:

Ω
2 =−4im∂t +∂x2

j . (6)

We introduce now the symmetries of LLE. According to [4] we define them in
terms of symmetry operators [4]:

Definition 2. Let A be an operator acting on the solution space of LLE. Namely,
A maps a solution of LLE into another one:

Ωψ = 0 =⇒ Ω(A ψ)
∣∣∣
Ωψ=0

= 0 (7)

In this case A is called a symmetry operator.

In this definition A can be any kind of operator such as multiplication, differential,
integral, etc. The traditional Lie point symmetry group of differential equations is
generated by a subset of symmetry operators which is closed under commutations.
Similarly, if a subset of symmetry operators forms a superalgebra or a Z2 ×Z2
graded Lie algebra, then the set generates a graded group of transformations in the
solution space of LLE.

We restrict now A to a differential operator of finite order. In this case a sufficient
condition of symmetry is given as follows. If A satisfies either the condition

[Ω ,A ] = ΛA (x)Ω (8)

or
{Ω ,A }= ΓA (x)Ω , (9)

where ΛA (x) or ΓA (x) is a 4× 4 matrix depending on the spacetime coordinates,
then A is a symmetry operator.

We are looking for symmetry operators given by a first order differential operator.
The results are summarized in the following two propositions:

Proposition 1. The operators below are LLE symmetry operators satisfying the con-
dition (8):

Pj = ∂x j , G j = t∂x j +2imx j +αγ j, M = 2im,

H = ∂t , D = 2t∂t + x j∂x j +2− 1
2

γ0γ4,

K = tD− t2
∂t + imx jx j +αx jγ j,

J jk = x j∂xk − xk∂x j −
1
2

γ jγk,

X̃ j = −ε jkn

(
[α,γk]∂xn +

im
2
[γk,γn]

)
. (10)
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The only two non-vanishing ΛA (x) matrices are ΛD = 1, ΛK = t. For convenience
the 4×4 unit matrix 14 is not explicitly indicated (e.g. Pj = 14 ∂x j ≡ ∂x j).

Apart from the X̃ j’s, the remaining symmetry operators close a Lie algebra. h(3) =
〈 Pj,G j,M 〉 is the three dimensional Heisenberg Lie algebra with M as a central
element. We have the non-relativistic conformal algebra sl(2,R) = 〈 H,D,K 〉 and
the spatial rotation so(3) = 〈 J jk 〉. Combining together these three Lie algebras
we get the Schrödinger algebra, whose structure is given by (sl(2,R)⊕ so(3)) ⊃+
h(3), with ⊃+ a semidirect sum of Lie algebras. We thus see that the Schrödinger
group is a symmetry of LLE. This fact is already known in the literature. In [4]
the Schrödinger algebra is presented as the maximal Lie symmetry of LLE. If the
symmetry operators X̃ j are included we are no longer able to close a Lie algebra.
Their addition leads to a Z2×Z2 graded Lie algebra. Before addressing the Z2×Z2
structure we look at the LLE’s supersymmetry.

Proposition 2. The operators below are LLE symmetry operators satisfying the con-
dition (9):

Q =
1√
−im

α∂t +
√
−imβ ,

S =
1√
−im

α

(
t∂t + x j∂x j +

3
2

)
+
√
−im(tβ + x jγ j),

X j =
1√
−im

α∂x j +
√
−imγ j, (11)

with only one non-vanishing ΓA (x) matrix given by ΓS =−α/
√
−im.

The physical meaning of these symmetry operators becomes clear when computing
their anticommutators:

{Q,Q}= 2H, {S,S}= 2K, {X j,Xk}= δ jkM,

{Q,S}= D, {Q,X j}= Pj, {S,X j}= G j. (12)

It follows that Q,S are, respectively, a supercharge and a conformal supercharge,
with X j a fermionic counterpart of h(3). Indeed, the Schrödinger algebra of Propo-
sition 1 and 〈 Q,S,X j 〉 close the N = 1 super Schrödinger algebra. This is verified
by direct computation of the (anti)commutation relations. The operator Q is already
found in [4] without recognizing it as a supercharge. One may also show (we omit
the proof for space reasons), that there exists no other supercharge Q satisfying

{Q,Q} = 2H, {Q,Q}= 0, {Q,Ω}= ΓQ(x)Ω ,

[D,Q] = −Q, [J jk,Q] = 0. (13)

We thus have the theorem:

Theorem 1. The N = 1 super Schrödinger algebra generates a symmetry super-
group of LLE and N = 1 is the maximal supersymmetry.
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The supersymmetry of LLE was conjectured many years ago in the study of the
worldline supersymmetry of the spinning particle [5]. If the symmetry is defined
according to Definition 2, then the conjecture is true. We mention here two other
previous works on supersymmetry of LLE. In [6] it was shown that LLE coupled
with an arbitrary static magnetic field has a super Schrödinger symmetry. In [7] the
Dirac equation and the Deser-Jackiw-Templeton equation in a (2+1) dimensional
spacetime are unified in a single multiplet of osp(1|2). It is shown that the non-
relativistic limit of this system carries an N = 2 super Schrödinger symmetry.

3 The Z2×Z2 graded symmetry of LLE

In this section we consider the symmetry of LLE with the X̃ j operators. There
are two key observations: (i) the X̃ j’s are obtained from the commutators of the
fermionic generators X j, X̃ j =

1
2 ε jkn[Xk,Xn]; (ii) each pair (Q,S),(Pj,G j) is a

sl(2,R)-doublet under the adjoint action. The observation (i) implies that we need
to give up the super Schrödinger structure, while (ii) implies that we may regard
(Pj,G j) as fermionic since this treats all sl(2,R) doublets on equal footing [16].
Therefore we introduce, from the anticommutators, the new operators

P̃jk = {Pj,Pk}, G̃ jk = {G j,Gk}, Wjk = {Pj,Gk},
XP

jk = {Pj,Xk}, XG
jk = {G j,Xk}. (14)

They are second order differential operators; it is easy to verify that they are sym-
metry operators of LLE. Surprisingly, these second order operators, together with
the first order operators in the super Schrödinger algebra, close a Z2×Z2 graded
Lie algebra GZ2×Z2 . This means that their (anti)commutators never produce higher
order differential operators. The assignment of the grading is given by

g00 = 〈 H, D, K, J jk, X̃ j,Wjk, P̃jk, G̃ jk 〉,
g01 = 〈 Pj, G j 〉,
g10 = 〈 Q, S, XP

jk, XG
jk 〉,

g11 = 〈 X j 〉. (15)

One may verify, by direct but cumbersome computation of the (anti)commutators,
that the algebra (15) satisfies Definition 1. We remark that the multiplication opera-
tor M has dropped out from this Z2×Z2 graded Lie algebra.

Theorem 2. The Z2×Z2 graded Lie algebra defined by the operators in (15) gen-
erates a symmetry group of LLE.

We have shown, in summary, that LLE has a N = 1 super Schrödinger symmetry
and a Z2×Z2 graded symmetry given by (15). The super Schrödinger algebra is not
a subalgebra of the Z2×Z2 graded algebra, although they share the same symmetry
operators. As a continuation of the present work one may investigate symmetries
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of LLE with a potential, since it is known that Schrödinger equation with linear or
quadratic potential has the same symmetry as the free equation [2, 11]. It is also an
interesting problem to study symmetries of a LLE for an arbitrary space dimension.
This would be done systematically by making use of the representation theory of
Clifford algebra. These works are in progress. Part of these results are reported in
[1].
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7. P. A. Horváthy, M. S. Plyushchay and M. Valenzuela, J. Math. Phys. 51 (2010) 092108
8. P. D. Jarvis, M. Yang and B. G. Wybourne, J. Math. Phys. 28 (1987) 1192
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