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Abstract

We study the convergence of a group of solutions in series of confluent hypergeometric functions for the
confluent Heun equation. These solutions are expansions in two-sided infinite series (summation from minus
to plus infinity) which are interpreted as a modified version of expansions proposed by Leaver [E. W. Leaver,
J. Math. Phys. 27, 1238 (1986)]. We show that the two-sided solutions yield two nonequivalent groups of
one-sided series solutions (summation from zero to plus infinity). In the second place, we find that one-sided
solutions of one of these groups can be used to solve an equation which describes a time-dependent two-level
system of Quantum Optics. For this problem, in addition to finite-series solutions, we obtain infinite-series
wavefunctions which are convergent and bounded for any value of the time t, and vanish when t goes to infinity.

Contents

1 Introductory remarks 1

2 Expansions in two-sided series of confluent hypergeometric functions 2
2.1 Confluent hypergeometric functions and transformations of the CHE . . . . . . . . . . . . . . . 3
2.2 The initial set of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Construction of the solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Convergence of the solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Convergence of U1 and U∞1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1 Introductory remarks

Recently we have found a new solution for the ordinary spheroidal wave equation [1]. It is given by an expansion in
series of irregular confluent hypergeometric functions Ψ(a, c; y) with parameters a and b, and argument y. That expansion
is a one-sided series in the sense that the summation, indicated by the index n, runs from zero to plus infinity (n ≥ 0).
From that solution we have inferred, without affording details, a group of solutions for the confluent Heun equation (CHE),
given also by expansions in series of Ψ. Now we provide a detailed derivation of the solutions and their convergence.

Actually, we generalize the previous study by considering a group constituted by sets of three solutions: one in series
of regular confluent hypergeometric functions Φ(a, c; y) and two in series of irregular functions Ψ(ai, ci; y) (i=1,2). From
an initial set of solutions, other sets follow systematically by means of substitutions of variables which preserve the form of
the CHE. The inclusion of the functions Φ(a, c; y) gives solutions valid near the origin y = 0. As a further generalization,
we introduce an arbitrary parameter into the solutions and get two-sided series expansions (−∞ < n < ∞) which are
necessary to treat problems where there is no free parameter in the CHE. We will find that these two-sided series can be
interpreted as a modified version of Leaver’s solutions [2].

We start with the two-sided series solutions and, from these, obtain the one-sided solutions as follows.

• We derive the group of two-sided series solutions and study the convergence of the solutions; then, we establish
relations between these solutions and solutions found by Leaver in 1986 [2].

• We truncate the aforementioned two-sided series in order to find two different groups of one-sided series solutions.
• Finally, we apply one-sided solutions to a two-state system which represents the interaction of an atom with a pulse

of Lorentzian shape [3].

In this section we write the CHE, present the tests for determining the series convergence and explain the procedure
for truncating the two-sided series; then, we outline the structure of the paper. We use the CHE in the form [2]

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+
[
B3 − 2ωη(z − z0) + ω2z(z − z0)

]
U = 0, ω 6= 0, (1)

where z0, Bi, η and ω are constants. If z0 6= 0, then z = 0 and z = z0 are regular singular points with indicial exponents
(0, 1 +B1/z0) and (0, 1−B2−B1/z0), respectively. The point z =∞ is an irregular singularity where the solutions behave
as [2, 4]

U(z) ∼ e±iωz z∓iη−
B2
2 , z →∞. (2)

The CHE is also called generalized spheroidal wave equation [2, 5, 6, 7] but the last terminology sometimes is attached to
a particular case of the CHE [8, 9]. A limit of Eq. (1), called reduced CHE, is introduced in section 5.

We deal with solutions whose series coefficients satisfy three-term recurrence relations, and use the theory concerning
the three-term relations [10, 11] to study the convergence. The general form of the two-sided series solutions is

U(z) =

∞∑
n=−∞

bµn h
µ
n(z), (3)

where the coefficients bµn and the functions hµn(z) depend on the parameters of the CHE and on a (characteristic) parameter
µ to be determined – in principle, each set of solutions presents a different parameter denoted as µi. By omitting the
parameter µ, the form of the recurrence relations for bµn is

αn bn+1 + βn bn + γn bn−1 = 0, −∞ < n <∞, (4)

where αn, βn and γn depend on the parameters of the CHE and on µ. Equivalently,
. . .

γn βn αn

γn+1 βn+1 αn+1

γn+2 βn+2 αn+2

. . .




.

bn−1

bn

bn+1

.

 = 0, −∞ < n <∞, (5)

where 0 denotes the null column vector. This system of homogeneous equations has non-trivial solutions only if the
determinant of the above tridiagonal matrix vanishes. This condition affords the possible values for µ if there is no free
constant in the CHE. If there is an arbitrary constant (and only in this case), we can attribute any convenient value for µ,
whereas the condition on the determinant permits to find values for the arbitrary constant of the CHE.
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The convergence of the two-sided series comes from the ratios

L1(z) =

∣∣∣∣bn+1hn+1(z)

bnhn(z)

∣∣∣∣ when n→∞, and L2(z) =

∣∣∣∣bn−1hn−1(z)

bnhn(z)

∣∣∣∣ when n→ −∞. (6)

By the D’Alembert test the series converges in the intersection of the regions where L1 < 1 and L2 < 1, and diverges
otherwise excepting the inconclusive case L1 = L2 = 1. Sometimes it is possible to decide about the convergence when
L1 = L2 = 1 by means of the Raabe test [12, 13]. In effect, if for some value of z,

L1(z) = 1 +
A

n
+O

(
1

n2

)
, L2(z) = 1 +

B

|n|
+O

(
1

n2

)
: |n| → ∞, (7)

where A and B are constants, then the Raabe test states that the series converges if A < −1 and B < −1, and diverges
otherwise (for A = B = −1 the test is inconclusive). In general, the limits of L1 and L2 afford different regions of
convergence. Since the one-sided infinite series require only one of these limits, their domain of convergence may be larger
than the domain of the corresponding two-sided series.

In fact, from two-sided series we will obtain two groups of one-sided series by taking into account that: (i) the series
begins at n = N + 1 if αn=N = 0, where N is an integer (see page 171 of [14]); (ii) the series terminates at n = M if
γn=M+1 = 0 (page 146 of [14]). We write this as

αn=N = 0 ⇒ series with n ≥ N + 1; γn=M+1 = 0 ⇒ series with n ≤M. (8)

So, to find the two groups of one-sided solutions, we suppose that there is a free constant in the CHE and choose the
parameter µ such that

α−1 = 0 ⇒ first group: series with n ≥ 0;

γ1 = 0 ⇒ second group: series with n ≤ 0.
(9)

The first group includes the solutions found in [1] as particular cases. On the other side, to avoid unusual series with n ≤ 0,
we rearrange the terms of the series in the second group in order to obtain solutions with n ≥ 0. Alternatively, we consider
the Leaver-type solutions whose form is given by

U(z) =

∞∑
n=−∞

bνn h
ν
n(z), [Leaver-type solutions] (10)

where the coefficients bνn and the functions hµn(z) depend on the parameters of the CHE and on a parameter ν to be
determined. Then, we will find that

hνn(z) = hµ−n(z) if ν = ν(µ) when −∞ < n <∞, (11)

where ν = ν(µ) means that we can redefine one parameter in terms of the other; for example, in Eq. (71) ν1 = −µ1−B2−
B1/z0. Since hµn and hνn differ only by the sign of the index n and since n runs from minus to plus infinity in two-sided
series, we infer that the expressions (3) and (10) are equivalent to each other, differing at most by a rearrangement of the
terms of the series. However, by taking µ = ν = 0 we find immediately the two nonequivalent groups of one-sided solutions
with n ≥ 0, corresponding to the solutions (9).

In section 2 we deal with the two-sided series solutions and their properties, including only a brief discussion of the
Leaver-type solutions (section 2.5). In section 3 we consider the two groups of one-sided series; in particular, we show that
it is possible to obtain the two groups by demanding that n ≤ 0 or n ≥ 0 in the same two-sided series, as indicated in
(9). In section 4 we show how we can apply one-sided solutions of the first group to the aforementioned two-level system,
while in section 5 we indicate some open questions concerning the CHE. Solutions omitted in section 2 are presented in
appendix A since they are applied in section 4.3. Appendix B supplies power series solutions that are used in section 4.2.

2 Expansions in two-sided series of confluent hypergeometric functions

This section deals with the two-sided series solutions which lead to the one-sided solutions of section 3.

• In section 2.1 we present the confluent hypergeometric functions, give the changes of variables which transform the
CHE in itself, and establish some notations.

• In sections 2.2, 2.3 and 2.4, respectively, we write the first set of solutions, show how the set is constructed and study
the convergence of each solution.

• In section 2.5 we find the relation between the Leaver-type solutions and the solutions having the form (3).

Other sets, resulting from transformations of the CHE, are given in appendix A.
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2.1 Confluent hypergeometric functions and transformations of the CHE

The regular and irregular confluent hypergeometric functions are denoted by Φ(a, c;u) and Ψ(a, c;u), respectively.
They satisfy the confluent hypergeometric equation [15]

u
d2ϕ(y)

dy2
+ (c− y)

dϕ(y)

du
− aϕ(y) = 0 (12)

which admits the solutions

ϕ1(u) = Φ(a, c; y), ϕ2(y) = y1−cΦ(1 + a− c, 2− c; y), ϕ3(y) = Ψ(a, c; y), ϕ4(y) = eyy1−cΨ(1− a, 2− c;−y), (13)

The functions Φ(a, c; y) and Ψ(a, c; y) are also denoted by M(a, c, y) and U(a, c, y), respectively [9]. Alternative expressions
for (13) follow from the relations

Φ(a, c; y) = eyΦ(c− a, c;−y), Ψ(a, c; y) = y1−cΨ(1 + a− c, 2− c; y). (14)

The functions ϕ1 and ϕ2 represent solutions for Eq. (12) satisfactory near the origin (y = 0), while ϕ3 and ϕ4 are
satisfactory in the neighborhood of infinity.

We will use only ϕ1, ϕ3 and ϕ4 as bases for the series expansions for the solutions of the CHE. If c is not a negative
integer, in a common region of validity these three functions are linearly dependent since

Φ(a,c;y)
Γ(c) = e∓iπa

Γ(c−a) Ψ(a, c; y) + e±iπ(c−a)

Γ(a) eyΨ
(
c− a, c; e±iπy

)
. (15)

On the other hand, if U(z) = U(B1, B2, B3; z0, ω, η; z) denotes one solution of the CHE, the following four transforma-
tions Ti leave invariant the form of the CHE [1, 16]:

T1U(z) = z1+
B1
z0 U(C1, C2, C3; z0, ω, η; z), T2U(z) = (z − z0)1−B2−B1

z0 U(B1, D2, D3; z0, ω, η; z),

T3U(z) = U(B1, B2, B3; z0,−ω,−η; z), T4U(z) = U(−B1 −B2z0, B2, B3 + 2ηωz0; z0,−ω, η; z0 − z),
(16)

where

C1 = −B1 − 2z0, C2 = 2 +B2 + 2B1

z0
, C3 = B3 +

[
1 + B1

z0

] [
B2 + B1

z0

]
,

D2 = 2−B2 − 2B1

z0
, D3 = B3 + B1

z0

(
B1

z0
+B2 − 1

)
. (17)

Then, by using the transformations (16), from an initial set of three solutions it is possible to obtain a group constituted
by 16 sets. We use the notation

Ui(z) =
[
Ui(z), U

∞
i (z), Ū∞i (z)

]
, [i = 1, 2, · · · , 16] (18)

where the solutions Ui are given by series of regular confluent hypergeometric functions, whereas U∞i and Ū∞i are given
by series of irregular confluent hypergeometric functions. We write only the 8 sets, namely,

U1(z), U2(z) = T1U1(z), U3(z) = T2U2(z), U4(z) = T1U3(z);

U5(z) = T4U1(z), U6(z) = T1U5(z), U7(z) = T2U6(z), U8(z) = T1U7(z),
(19)

since others are obtained by the transformation T3 which changes (η, ω) by (−η,−ω) in the above sets. In order to write

the solutions Ui and U∞i in terms of the same series coefficients b
(i)
n , instead of Φ(a, b; y) we use the function Φ̃(a, b; y)

defined by [2]

Φ̃(a, c; y = Γ(c−a)
Γ(c) Φ(a, c; y) = Γ(c−a)

Γ(c)

[
1 + a

c
y
1! + a(a+1)

c(c+1)
y2

2! + · · ·
]
. (20)

Since this definition changes the coefficients of Ui(z), in order to use relations (8), it is convenient to rewrite Ui(z) in terms
of Φ(a, b; y) as in Eq. (26). The series coefficients satisfy three-term recurrence relations having the form (4), that is,

α(i)
n b

(i)
n+1 + β(i)

n b(i)n + γ(i)
n b

(i)
n−1 = 0, ᾱ(i)

n b̄
(i)
n+1 + β̄(i)

n b̄(i)n + γ̄(i)
n b̄

(i)
n−1 = 0, −∞ < n <∞ (21)

where b̄
(i)
n denote the coefficients of the solutions Ū∞i . The coefficients α

(i)
n , β

(i)
n and γ

(i)
n (ᾱ

(i)
n , β̄

(i)
n and γ̄

(i)
n ) depend on the

parameters of the differential equation as well as on a parameter µi. To assure two-sided series, we must exclude certain

values of this parameter µi: for example, µi must be such that α
(i)
n 6= 0 and γ

(i)
n 6= 0, on the contrary the series truncates on
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the left (α
(i)
n = 0) or on the right-hand side (γ

(i)
n = 0), as already explained. From relations (21) it results a transcendental

(characteristic) equation given as a sum of two infinite continued fractions [2], namely,

β0 =
α−1γ0

β−1−
α−2γ−1

β−2−
α−3γ−2

β−3−
· · ·+ α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
· · · , (22)

which is equivalent to the vanishing of the determinant of a tridiagonal matrix having the form given in (5).
In each set, the solutions Ui(z) and U∞i (z) are valid only if the parameters of the CHE satisfy certain restrictions which

avoid that the hypergeometric functions reduce to polynomials of fixed degree l. In effect, we have the relations [15]

Φ̃(−l, α+ 1; y) = (−1)lΨ(−l, α+ 1; y) = l! Lαl (y), l = 0, 1, 2, · · · (23)

where the Lαl (y) denote Laguerre polynomials of degree l. Then, if l is fixed (i. e., if l does not depend on the summation
index n) there is no sense in using these polynomials as bases for series expansions. In addition, we have to take into
account that the functions Φ̃(a, c; y) in general are well defined only if c is not zero or negative integer. Further, if the
definition (20) is unsuitable because the argument of Γ(c−a) is zero or a negative integer, we redefine the series coefficients
as in (26).

2.2 The initial set of solutions

The following set of solutions, (U1(z), U∞1 (z), Ū∞1 (z)), is constituted by expansions in series of the functions ϕ1(y),
ϕ3(y) and ϕ4(y) with y = −2iωz, a = iη +B2/2 and c = −n− µ1 −B1/z0. The solutions U1(z) and U∞1 (z) are valid only
if iη + B2

2 6= 0,−1, · · · .

[
U1(z)

U∞1 (z)

]
= eiωz

∞∑
n=−∞

b(1)
n

 Φ̃
(
iη + B2

2 ,−n− µ1 − B1

z0
;−2iωz

)
Ψ
(
iη + B2

2 ,−n− µ1 − B1

z0
;−2iωz

)
 , iη + B2

2 6= 0,−1,−2, · · · ,

Ū∞1 (z) = e−iωz
∞∑

n=−∞
b̄
(1)
n Ψ

(
−n− µ1 − iη − B1

z0
− B2

2 ,−n− µ1 − B1

z0
; 2iωz

) (24)

where b
(1)
n and b̄

(1)
n satisfy the recurrence relations (21) with

α
(1)
n = −2iωz0(n+ µ1 + 1), γ

(1)
n = −

[
n+ µ1 + iη + B2

2 + B1

z0

] [
n+ µ1 − 1 +B2 + B1

z0

]
,

β
(1)
n = [n+ µ1]

[
n+ µ1 + 1 + 2iωz0 +B2 + 2B1

z0

]
+
[
B2 + B1

z0

] [
1 + B1

z0
+ iωz0

]
+B3 (25a)

and

ᾱ
(1)
n = −2iωz0(n+ µ1 + 1)

[
n+ µ1 + 1 + iη + B2

2 + B1

z0

]
, β̄

(1)
n = β

(1)
n ,

γ̄
(1)
n = −

[
n+ µ1 − 1 +B2 + B1

z0

]
, b̄

(1)
n = (−1)nΓ

[
−n− µ1 − iη − B1

z0
− B2

2

]
b
(1)
n . (25b)

From the above connection between the coefficients, we get

U1(z) = eiωz
∞∑

n=−∞

(−1)nb̄
(1)
n

Γ [−n− µ1 − (B1/z0)]
Φ
(
iη + B2

2 ,−n− µ1 − B1

z0
;−2iωz

)
, (26)

where −n − µ1 − (B1/z0) is not zero or negative integer, by hypothesis. This exhibits a particular case of the fact that
coefficients of Ui(z) and Ū∞i (z) satisfy the same recurrence relations.

The set (24) is a generalization of a one-sided series solution found in [1], namely,

U3(z) = eiωz
∞∑
n=0

b3n Ψ
(
iη + B2

2 ,−
B1

z0
− n;−2iωz

)
, iη + B2

2 6= 0,−1, · · · .

In fact, if we replace Ψ (iη +B2/2,−B1/z0 − n;−2iωz) by Ψ (iη +B2/2,−B1/z0 − n− µ1;−2iωz) we get U∞1 (z). Then, we
add the expansion U1(z) in order to get a solution valid in the neighborhood of z = 0 since the function Φ(a, c; y = −2iωz)
is well defined at z = 0 when c is not a negative integer. The solution Ū∞1 (z) formally results as a linear combination of
U1(z) and U∞1 (z) by means of relation (15), but it is not convergent at z = 0 or z =∞. This is seen by writing

Ū∞1 (z)
(14,24)

= e−iωzz1+
B1
z0

∞∑
n=−∞

b̄
(1)
n (2iωz)

n+µ1 Ψ
(

1− iη − B2

2 , n+ µ1 + 2 + B1

z0
; 2iωz

)
.
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Thence, we get

Ū∞1 (z) = e−iωzz1+
B1
z0

∞∑
n=−∞

b̄
(1)
n (2iωz)

n+µ1 if 1− iη − B2

2 = 0 (27)

and, for this particular case, we see that the series does not converge at z = 0 and z =∞. Notice that we have disregarded
a solution Ū1 in terms of regular confluent hypergeometric functions; it reads

Ū1 = eiωz
∞∑

n=−∞
b
(1)
n [2iωz]

n+µ1+1+
B1
z0 Φ̃

[
n+ µ1 + 1 + iη + B2

2 + B1

z0
, n+ µ1 + 2 + B1

z0
;−2iωz

]
. (28)

This expansion may be useful to study solutions for the limit (121) of the CHE.

2.3 Construction of the solutions

We construct only the first set of solutions since the others follow from that by the transformations (16). Thus, to get
the solutions (24), first we accomplish the substitutions

U(z) = eiωz V (y), y = −2iωz (29)

which, when inserted into (1), lead to(
y + 2iωz0

)
y
[
d2V
dy2 − dV

dy

]
+
[
B2y − 2iωB1

]
dV
dy +

[
B3 + iωB1 + 2ηωz0 −

(
iη + B2

2

)
y
]
V = 0. (30)

In the second place, we expand V (y) as

V (y) =

∞∑
n=−∞

b(1)
n

(
α,−B1

z0
− n− µ1; y

)
, (a, c; y) = Ψ(a, c; y) or (a, c; y) = Φ̃(a, c; y) (31)

and show that α = iη+ (B2/2), while the coefficients b
(1)
n satisfy the relations (21) with the coefficients (25a). To this end,

we use the equations [9, 2]

y d
2(a,c;y)
dy2 − y d(a,c;y)

dy = −cd(a,c;y)
dy + a(a, c; y), [see Eq. (12)],

d(a,c;y)
dy = (a, c; y)− (a, c+ 1; y),

y d(a,c;y)
dy = [1− c](a, c; y) + [c− a− 1](a, c− 1; y),

y(a, c+ 1; y) = [a+ 1− c](a, c− 1; y) + [y + c− 1](a, c; y). (32)

Thence, putting a = α, c = −(B1/z0)− n− µ1 and n(y) = [α,−(B1/z0)− n− µ1; y], we find

y d
2
n

dy2 − y dndy =
(
n+ µ1 + B1

z0

)
dn
dy + αn,

dn
dy = n − n−1, y dndy = [1− c] n −

[
n+ µ1 + α+ 1 + B1

z0

]
n+1,

yn−1 =
(
n+ µ1 + 1 + α+ B1

z0

)
n+1 +

(
y − B1

z0
− n− µ1 − 1

)
n. (33)

Inserting V (y) =
∑∞
n=−∞ b

(1)
n n(y) into (30) and using (33), we find

∞∑
n=−∞

[
α

(1)
n−1 b

(1)
n n−1(y) + β

(1)
n b

(1)
n n(y) + γ

(1)
n+1 b

(1)
n n+1(y) +

(
α− iη − B2

2

)
b
(1)
n yn(y)

]
= 0, (34)

where

α
(1)
n = −2iωz0 [n+ µ1 + 1] , γ

(1)
n = −

[
n+ µ1 + α+ B1

z0

] [
n+ µ1 − 1 + B1

z0
+B2

]
,

β
(1)
n = 2iωz0

[
n+ µ1 + α+ B1

z0

]
+
[
n+ µ1 + 1 + B1

z0

] [
n+ µ1 + B1

z0
+B2

]
+ 2ηωz0 − iωB1 +B3.

Now we determine the constant α by equating to zero the last term of Eq. (34), that is,(
α− iη − B2

2

)
b
(1)
n yn(y) = 0 ⇒ α = iη + B2

2 .
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In this manner we recover the coefficients (25a), while Eq. (34) becomes

∞∑
n=−∞

[
α

(1)
n−1 b

(1)
n n−1(y) + β

(1)
n b

(1)
n n(y) + γ

(1)
n+1 b

(1)
n n+1(y)

]
= 0, (35)

which, for two-sided infinite series, can be factorized as

∞∑
n=−∞

[
α

(1)
n b

(1)
n+1 + β

(1)
n b

(1)
n + γ

(1)
n b

(1)
n−1

]
n(y) = 0.

This equation is fulfilled by the recurrence relations (21) for b
(1)
n .

To find the solutions Ū∞1 (z), first we carry out the substitutions

U(z) = Ū∞1 (y) = e−iωzF (y), y = 2iωz, (36a)

which transform the CHE (1) into

(y − 2iωz0)y
[
d2F
dy2 − dF

dy

]
+ [B2y + 2iωB1] dFdy +

[
B3 − iωB1 + 2ηωz0 +

(
iη − B2

2

)
y
]
F = 0. (36b)

In the second place, we expand F (y) as

F (y) =

∞∑
n=−∞

b̄(1)
n ψn(y), ψn = Ψ

[
−n− µ1 − iη − B1

z0
− B2

2 ,−n− µ1 − B1

z0
; 2iωz

]
(37)

and use the relations [9, 2]

y d
2Ψ(a,c;y)
dy2 − y dΨ(a,c;y)

dy = −cdΨ(a,c;y)
dy + aΨ(a, c; y), [see Eq. (12)],

dΨ(a,c;y)
dy = −aΨ(a+ 1, c+ 1; y), y dΨ(a,c;y)

dy = [1− c+ y]Ψ(a, c; y)−Ψ(a− 1, c− 1; y),

ayΨ(a+ 1, c+ 1; y) + [y − c+ 1]Ψ(a, c; y)−Ψ(a− 1, c− 1; y) = 0. (38)

Thence, we find

y d
2ψn(y)
dy2 − y dψn(y)

dy =
(
n+ µ1 + B1

z0

)
dψn(y)
dy −

(
n+ µ1 + iη + B1

z0
+ B2

2

)
ψn(y),

dψn
dy =

(
n+ µ1 + iη + B1

z0
+ B2

2

)
ψn−1, y dψndy =

(
n+ 1 + µ1 + B1

z0
+ y
)
ψn − ψn+1,(

n+ µ1 + iη + B1

z0
+ B2

2

)
yψn−1(y)−

(
n+ µ1 + 1 + B1

z0
+ y
)
ψn(y) + ψn+1(y) = 0. (39)

Then, by inserting (37) into (36b) and using the above relations we obtain

∞∑
n=−∞

[
ᾱ

(1)
n−1 b̄

(1)
n ψn−1(y) + β

(1)
n b̄

(1)
n ψn(y) + γ̄

(1)
n+1 b̄

(1)
n ψn+1(y)

]
= 0, (40)

which, for two-sided infinite series, can be rewritten as

∞∑
n=−∞

[
ᾱ

(1)
n b̄

(1)
n+1 + β

(1)
n b̄

(1)
n + γ̄

(1)
n b̄

(1)
n−1

]
ψn(y) = 0.

This equation gives the recurrence relations (21) for b̄
(1)
n .

2.4 Convergence of the solutions

The function Ψ(a, c; y) is satisfactory in the neighborhood of infinity but it may become inappropriate at y = 0 (in
particular, it presents logarithmic terms at y = 0 if c = 0, 1, 2 [9]). The ratio tests do not detect this fact; on account of
this, we suppose that the U∞i are not valid when y = 0. Further, we will see that the ratios between successive terms of
the series hold only for finite values of z. For this reason, before deciding on the convergence at z =∞, it is necessary to
examine the behavior of each solution when |z| → ∞.

The regions of convergence of the one-sided series will depend on how the two-sided series are truncated: on the left-
hand (n ≥ 0) or on the right-hand side (n ≤ 0). Then, in the following it is important to distinguish between the results
coming from the ratio test when n→ −∞ and those coming from n→∞. We find that:
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• The solutions Ui(z) in series of regular confluent hypergeometric functions converge for any finite value of z, but the
ratio test does not allow to decide on the convergence at z =∞ – see limit (51).

• When n→∞ the ratio test for the U∞i (z) does not exclude any finite value of z but the functions Ψ(a, c; y) are not
appropriate for y = 0 and, so, the U∞i are not valid at z = 0 (if i = 1, 2, 3, 4) and at z = z0 (if i = 5, 6, 7, 8); the U∞i
converge as well at z = ∞ under the conditions (41). On the other side, when n → −∞ the test implies that the
U∞i converge for (finite) values of z such that |z| > |z0| (i = 1, 2, 3, 4) or |z − z0| > |z0| (i = 5, 6, 7, 8); they converge
also at |z| = |z0|, or at |z − z0| = |z0| under the conditions given in (42) and (43).

• By the ratio test when n→∞, the solutions Ū∞i (z) do not converge at z =∞. By the test when n→ −∞, the Ū∞i
converge only for values z such that |z| > |z0| (i = 1, 2, 3, 4) or |z − z0| > |z0| (i = 5, 6, 7, 8); they converge also at
|z| = |z0|, or at |z − z0| = |z0| under the restrictions given in (42) and (43).

From the Raabe test when n→∞, we will find that the U∞i converge at z =∞ if

n→∞ : Re
[
iη + B2

2 − 1
]
< 0 for U∞1 , U∞5 ; Re

[
iη + B1

z0
+ B2

2

]
< 0 for U∞2 , U∞6 ;

Re
[
iη − B2

2 + 1
]
< 0 for U∞3 , U∞7 ; Re

[
iη − B1

z0
− B2

2

]
< 0 for U∞4 , U∞8 .

(41)

The following conditions come from the Raabe test when n→ −∞:

n→ −∞ : |z| ≥ |z0|, sign “=” if


Re
[
B2 + B1

z0

]
<1 for (U∞1 , Ū∞1 ), (U∞2 , Ū∞2 );

Re
[
B2 + B1

z0

]
>1 for (U∞3 , Ū∞3 ), (U∞4 , Ū∞4 );

(42)

n→ −∞ : |z − z0| ≥ |z0|, sign “=” if


Re
[
B1

z0

]
>− 1 for (U∞5 , Ū∞5 ), (U∞8 , Ū∞8 ),

Re
[
B1

z0

]
<− 1 for (U∞6 , Ū∞6 ). (U∞7 , Ū∞7 ).

(43)

It is sufficient to consider explicitly only the first set, U1 = (U1, U
∞
1 , Ū∞1 ); the results for the other sets follow by the

transformations (16) applied according to (19).

2.4.1 Convergence of U1 and U∞
1

We write U1 and U∞1 as [
U1(z), U∞1 (z)

]
= eiωz

∞∑
n=−∞

b(1)
n n(y), y = −2iωz, (44a)

where n(y) is defined by

n(y) =
[
Φ̃
(
iη + B2

2 ,−n− µ1 − B1

z0
; y
)
,Ψ
(
iη + B2

2 ,−n− µ1 − B1

z0
; y
)]
. (44b)

For these solutions the ratios (6) read (y = −2iωz)

L1(z) =

∣∣∣∣ b(1)
n+1n+1(y)

b
(1)
n n(y)

∣∣∣∣ for n→∞, L2(z) =

∣∣∣∣ b(1)
n−1n−1(y)

b
(1)
n n(y)

∣∣∣∣ for n→ −∞. (45)

From relations (21) for b
(1)
n , when n→ ±∞ we find

2iωz0

[
1 +

1 + µ1

n

]
b
(1)
n+1

b
(1)
n

−
[
n+ 2µ1 + 1 + 2iωz0 +B2 +

2B1

z0

]
+

[
n+ 2µ1 − 1 + iη +

2B1

z0
+

3B2

2

]
b
(1)
n−1

b
(1)
n

= 0,

which is satisfied by (n→ ±∞)

b
(1)
n+1

b
(1)
n

∼ 1 + 1
n

(
iη + B2

2 − 2
)
⇔ b

(1)
n−1

b
(1)
n

∼ 1− 1
n

(
iη + B2

2 − 2
)

or

b
(1)
n+1

b
(1)
n

∼ n
2iωz0

[
1 + 1

n

(
µ1 +B2 + 2B1

z0

)]
⇔ b

(1)
n−1

b
(1)
n

∼ 2iωz0
n

[
1 + 1

n

(
1− µ1 −B2 − 2B1

z0

)]
.

Then, for the minimal solutions [10] for b
(1)
n we find

b
(1)
n+1

b
(1)
n

∼ 1 + 1
n

(
iη + B2

2 − 2
)

if n→∞, b
(1)
n−1

b
(1)
n

∼ 2iωz0
n

[
1 + 1

n

(
1− µ1 −B2 − 2B1

z0

)]
if n→ −∞. (46)
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On the other hand, from the last equation given in (33) we obtain (y = −2iωz)[
n+ µ1 + 1 + iη + B1

z0
+ B2

2

]
n+1(y)

n(y) −
[
n+ µ1 + 1 + 2iωz + B1

z0

]
+ 2iωz n−1(y)

n(y) = 0. (47)

If z is bounded (2iωz/n→ 0), when n→ ±∞ Eq. (47) is satisfied by two expressions for n+1/n or n−1/n, namely,

n+1

n
∼ 1− 1

n

(
iη + B2

2

)
⇔ n−1

n
∼ 1 + 1

n

(
iη + B2

2

)
,

n+1

n
∼ 2iωz

n

[
1− 1

n

(
2 + µ1 + B1

z0

)]
⇔ n−1

n
∼ n

2iωz

[
1 + 1

n

(
1 + µ1 + B1

z0

)]
.

(48)

If the n represent the functions Φ̃, we select

n+1

n
∼ 1− 1

n

(
iη + B2

2

)
if n→∞, n−1

n
∼ 1 + 1

n

(
iη + B2

2

)
if n→ −∞ [n = Φ̃]

because these choices are consistent with the fact that limc→∞ = Φ(a, c; y) = 1 if a and y remain fixed and bounded [15].
Thence, using (46), we get the ratios

b
(1)
n+1n+1

b
(1)
n n

∼ 1− 2
n , if n→∞;

b
(1)
n−1n−1

b
(1)
n n

∼ 2iωz0
n , if n→ −∞ [solution U1(z)]. (49)

Therefore, the Raabe test assures that U1(z) converges for any finite value of z. To examine the behavior of U1 when
z →∞ we use [9]

Φ̃(a, c; y) ∼ Γ(c−a)
Γ(a) eyya−c + e±iπay−a, [|y| → ∞, a 6= 0,−1, · · · ; c− a 6= 0,−1, · · · ] (50)

where the upper sign holds for −π/2 < arg y < 3π/2 and the lower sign, for −3π/2 < arg y ≤ −π/2. Thence, for z → ∞
we find

U1(z) ∼ eiωz z−iη−
B2
2

∞∑
n=−∞

b(1)
n + e−iωz ziη+µ1+

B1
z0

+
B2
2

∞∑
n=−∞

Γn b
(1)
n (−2iωz)n, Γn = Γ

(
−B1

z0
− B2

2 − n− µ1 − iη
)
.

This limit does not assure convergence at z =∞ because the ratio between the terms of the second series becomes indefinite
when n→ +∞ since

Γn+1 b
(1)
n+1 (−2iωz)n+1

Γn b
(1)
n (−2iωz)n

(46)∼ 2iωz
n , [z →∞, n→∞].

To select the ratios for n = Ψ we use the fact that, if |c| → ∞ while a and y remain fixed and bounded, then [15]

Ψ(a, c; y) = c−a
[
(−1)−a +

√
2π

Γ(a)

(
c
ey

)c+a− 3
2

ya−
1
2 ey+a− 3

2

] [
1 +O

(
1
|c|

)]
, (51)

|c| → ∞, a 6= 0,−1,−2, · · · , | arg(±c)| < π.

Remembering that in this case n(y) = Ψ(a, c; y) = Ψ (iη +B2/2,−n− µ1 −B1/z0;−2iωz) we see that the first term on
the right-hand side of (51) is the only term relevant as n→∞, while the second term is the only one relevant as n→ −∞.
Thus,

n+1

n
∼ 1− 1

n

(
iη + B2

2

)
if n→∞, n−1

n
∼ n

2iωz

[
1 + 1

n

(
1 + µ1 + B1

z0

)]
if → −∞.

Notice that (51) is responsible only for the first term of these limits; the second term comes from (48). Thus, by using also
the ratios (46), for U∞1 we find

b
(1)
n+1n+1

b
(1)
n n

∼ 1− 2
n if n→∞, b

(1)
n−1n−1

b
(1)
n n

∼ z0
z

[
1 + 1

n

(
2−B2 − B1

z0

)]
if n→ −∞.

or ∣∣∣∣ b(1)
n+1n+1

b
(1)
n n

∣∣∣∣ ∼ 1− 2
n if n→∞,

∣∣∣∣ b(1)
n−1n−1

b
(1)
n n

∣∣∣∣ ∼ |z0||z| [1 + 1
|n|Re

(
B2 + B1

z0
− 2
)]

if n→ −∞. (52)

Therefore, by the D’Alembert test the series converges for |z| > |z0|; in addition, according to the Raabe test the series
converges also at |z| = |z0| provided that Re (B2 +B1/z0) < 1 as stated in (42). Since the above ratios (52) have been
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obtained by supposing that z is finite, now we consider the behavior of U∞1 as z →∞. As Ψ(a, c; y) = y−a for large y, we
find

U∞1 (z) ∼ eiωz z−iη−
B2
2

∞∑
n=−∞

b(1)
n when z →∞, (53)

where, on the right-hand side,∣∣∣∣ b(1)
n+1

b
(1)
n

∣∣∣∣ (46)∼ 1 + 1
nRe

(
iη + B2

2 − 2
)

if n→∞,
∣∣∣∣ b(1)
n−1

b
(1)
n

∣∣∣∣ (46)∼
∣∣ 2ωz0
n

∣∣→ 0 if n→ −∞. (54)

Thus, by the Raabe test for n→∞, the series in the expansion U∞1 converges at z =∞ if Re(iη+B2/2− 1) < 0 as stated
in (41).

2.4.2 Convergence of Ū∞
1

For the solution Ū∞1 written in (36a) and (37), we have

Ū∞1 (z) = e−iωz
∞∑

n=−∞
b̄(1)
n ψn(y), ψn = Ψ

[
−n− µ1 − iη − B1

z0
− B2

2 ,−n− µ1 − B1

z0
; 2iωz

]
,

and the ratios (6) read (y = 2iωz)

L1(z) =

∣∣∣∣ b̄(1)
n+1ψn+1(y)

b̄
(1)
n ψn(y)

∣∣∣∣ for n→∞, L2(z) =

∣∣∣∣ b̄(1)
n−1ψn−1(y)

b̄
(1)
n ψn(y)

∣∣∣∣ for n→ −∞. (55)

When n→ ±∞, relations (21) for b̄
(1)
n give

2iωz0

[
n+ 2µ1 + 2 + iη + B1

z0
+ B2

2

]
b̄
(1)
n+1

b̄
(1)
n

−
[
n+ 2µ1 + 1 + 2iωz0 +B2 + 2B1

z0

]
+
[
1 + 1

n

(
µ1 − 1 +B2 + B1

z0

)]
b̄
(1)
n−1

b̄
(1)
n

= 0,

Then, for minimal solutions we find

b̄
(1)
n+1

b̄
(1)
n

∼ 1
n

[
1− 1

n

(
µ1 + 3 + B1

z0

)]
if n→∞, b̄

(1)
n−1

b̄
(1)
n

∼ 2iωz0

[
1 + 1

n

(
1 + iη − B1

z0
− B2

2

)]
if n→ −∞, (56)

which correspond respectively to

b̄
(1)
n−1

b̄
(1)
n

∼ n+ µ1 + 2 + B1

z0
if n→∞ ,

b̄
(1)
n+1

b̄
(1)
n

∼ 1
2iωz0

[
1− 1

n

(
1 + iη − B1

z0
− B2

2

)]
if n→ −∞.

To obtain the ratios for the functions ψn(y), we write the last of equations (39) as

ψn+1(y)
ψn(y) −

(
n+ µ1 + 1 + B1

z0
+ y
)

+
(
n+ µ1 + iη + B1

z0
+ B2

2

)
yψn−1(y)

ψn
= 0. (57)

If y is bounded (y/n→ 0), this equation is satisfied by two expressions for ψn+1/ψn or ψn−1/ψn,

ψn+1

ψn
∼ n

[
1 + 1

n

(
µ1 + 1 + B1

z0

)]
⇔ ψn−1

ψn
∼ 1

n

[
1− 1

n

(
µ1 + B1

z0

)]
,

ψn+1

ψn
∼ y

[
1− 1

n

(
1− iη − B2

2

)]
⇔ ψn−1

ψn
∼ 1

y

[
1 + 1

n

(
1− iη − B2

2

)]
,

(58)

where y = 2iωz.
If 1− iη −B2/2 = −l (l = 0, 1, . . . ) we must choose the ratios

ψn+1

ψn
∼ y

[
1 + l

n

]
if n→∞, ψn−1

ψn
∼ 1

y

[
1− l

n

]
if n→ −∞ :

(
l = iη + B2

2 − 1
)
,

which imply that∣∣∣∣ b̄(1)
n+1ψn+1

b̄
(1)
n ψn

∣∣∣∣ ∼ ∣∣ 2ωzn ∣∣ if n→∞,∣∣∣∣ b̄(1)
n−1ψn−1

b̄
(1)
n ψn

∣∣∣∣ ∼ |z0||z| [1 + 1
|n|Re

(
B2 + B1

z0
− 2
)]

if n→ −∞,

 for iη + B2

2 − 1 = l. (59)
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The above choices for the ratios between consecutive ψn follow from the relation [9]

ψn(y) = Ψ(a, a+ l + 1; y) =
l! y−a

Γ(a)

l∑
m=0

Γ(a+m) y−m

m! (l −m)!
, l = 0, 1, 2, · · · . (60)

where (a)m is the Pochhammer symbol and, for the present case, a = −n− µ1 − 1− l −B1/z0.
On the other hand, by means of (14), we write

ψn(y) = yn+1+µ1+
B1
z0 Ψ

(
1− iη − B2

2 , 2 + n+ µ1 + B1

z0
; y
)
,

which gives

ψn+1

ψn
= y

Ψ
(

1−iη−B2
2 ,3+n+µ1+

B1
z0

;y
)

Ψ
(

1−iη−B2
2 ,2+n+µ1+

B1
z0

;y
) , ψn−1

ψn
= 1

y

Ψ
(

1−iη−B2
2 ,1+n+µ1+

B1
z0

;y
)

Ψ
(

1−iη−B2
2 ,2+n+µ1+

B1
z0

;y
) , (61)

Then, if l 6= iη + B2

2 − 1, we can use (61) in conjunction with (51) to select the ratios

ψn+1

ψn
∼ n

[
1 + 1

n

(
µ1 + 1 + B1

z0

)]
if n→∞, ψn−1

ψn
∼ 1

y

[
1 + 1

n

(
1− iη − B2

2

)]
if n→ −∞ .

In effect, when n → ∞, only the second term of (51) is relevant and so we get the first term of the above ratio; when
n→ −∞, only the first term of (51) is relevant. Therefore,∣∣∣∣ b̄(1)

n+1ψn+1

b̄
(1)
n ψn

∣∣∣∣ ∼ 1− 2
n if n→∞,∣∣∣∣ b̄(1)

n−1ψn−1

b̄
(1)
n ψn

∣∣∣∣ ∼ |z0||z| [1 + 1
|n|Re

(
B2 + B1

z0
− 2
)]

if n→ −∞,

 for iη + B2

2 − 1 6= l. (62)

From (59) and (62) we see that, by the Raabe test, Ū∞1 converges for any |z| > |z0|; it converges also at |z| = |z0| if
Re(B1 +B1/z0) < 1 as stated in (42). As the test does not hold for z →∞, by using limy→∞Ψ(a, c; y) = y−a for large y,
we find

Ū∞1 (z) ∼ e−iωzziη+µ1+
B1
z0

+
B2
2

∞∑
n=−∞

b̄
(1)
n (2iωz)

n
[z →∞]

which becomes undetermined at z =∞ when n→∞ due to the first of the relations:

b̄
(1)
n+1(2iωz)n+1

b̄
(1)
n (2iωz)n

(56)∼ 2ωz
n if n→∞, b̄

(1)
n−1(2iωz)n−1

b̄
(1)
n (2iωz)n

(56)∼ z0
z → 0 if n→ −∞ [z →∞]. (63)

For one-sided series with n ≤ 0, the first relation does not exist and, so, the series converges at z =∞.

2.5 Relations with Leaver-type series solutions

The second version for the two-sided solutions is an extension of the solutions given by Leaver who has considered only
one expansion in series of regular confluent hypergeometric functions and one in series of irregular functions [2]. In fact,
we can use expansions in series of any of the four functions (13) and add new solutions by means of (16).

• In section 2.5.1 we write the initial set of solutions (65) and show that it is equivalent to the set (24).
• In sections 2.5.2 we state the regions of convergence for the solutions.

The study of convergence is incomplete in Leaver’s paper, a fact that now becomes irrelevant. In fact, the regions of
convergence are the same as the ones of the first version (equivalence of solutions), except that the restrictions which come
from the ratios when n → ±∞ in section 2.3, now result from n → ∓∞. This will imply differences in the regions of the
two groups of one-sided series solutions.

Now we denote the sets of solutions by bold letters, that is,[
Ui(z),U

∞
i (z), Ū∞i (z)

]
, [i = 1, 2, · · · , 16] (64)

which take the role of (18). We write only the initial set (U1,U
∞
1 , Ū∞1 ), but others may be generated by the transformations

(16) as indicated in (19).
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2.5.1 The initial set of Leaver-type solutions

In the following, the solutions U1(z) and U∞1 (z) are the expansions (138) and (140) of Leaver’s paper. The solution
Ū∞1 (z) can be interpreted as a linear combination of U1(z) and U∞1 (z). Thus,[

U1(z)

U∞1 (z)

]
= eiωz

∞∑
n=−∞

b(1)
n

[
Φ̃
(
B2

2 + iη, n+ ν1 +B2;−2iωz
)

Ψ
(
B2

2 + iη, n+ ν1 +B2;−2iωz
) ] , B2

2 + iη 6= 0,−1,−2, · · ·

Ū∞1 (z) = e−iωz
∞∑

n=−∞
(−1)nb̄

(1)
n Ψ

(
n+ ν1 − iη + B2

2 , n+ ν1 +B2; 2iωz
) (65)

where b
(1)
n and b̄

(1)
n satisfy recurrence relations having the form (21) with

α
(1)
n = −[n+ ν1 + 1]

[
n+ ν1 − iη + B2

2

]
, γ

(1)
n = 2iωz0

[
n+ ν1 +B2 + B1

z0
− 1
]
,

β
(1)
n = (n+ ν1)(n+ ν1 +B2 − 1− 2iωz0) +B3 − iωz0

(
B2 + B1

z0

)
for b

(1)
n (66a)

and

ᾱ
(1)
n = − [n+ ν1 + 1] , β̄

(1)
n = β

(1)
n , γ̄

(1)
n = 2iωz0

[
n+ ν1 +B2 + B1

z0
− 1
] [
n+ ν1 − iη + B2

2 − 1
]
, (66b)

b̄
(1)
n = Γ

[
n+ ν1 − iη + B2

2

]
b

(1)
n .

From the above connection between the coefficients, we see that

U1(z) = eiωz
∞∑

n=−∞

b̄
(1)
n

Γ [n+ ν1 +B2]
Φ
(
iη + B2

2 , n+ ν1 +B2;−2iωz
)
. (67)

This reminds that the coefficients of Ui(z) and Ū∞i (z) satisfy the same recurrence relations. On the other side, from
limz→∞ ψ(a, c; y) = y−a we find

lim
z→∞

U∞1 (z) = e−iωzziη−
B2
2 b

(1)
0 , lim

z→∞
Ū∞1 (z) = eiωzz−iη−ν1−B2

2

∞∑
n=−∞

b̄(1)
n (−2iωz)−n. (68)

Thus, for one-sided series with n ≥ 0 it is possible (if ν1 = 0) to obtain the two asymptotic behaviors (2) from solutions
belonging to the same set. Besides this, it is possible another expansion in series of regular confluent hypergeometric
functions, namely,

Ū1(z) = eiωz
∞∑

n=−∞
b

(1)
n (2iωz)

1−n−ν1−B2 Φ̃
(
1− n− ν1 + iη − B2

2 , 2− n− ν1 −B2;−2iωz
)
. (69)

This expansion may be useful for studying solutions for the reduced CHE (121).
By putting µ1 = −ν1 −B2 − (B1/z0), we verify that the expansions (65) differ from the expansions (24) of section 2.2

because the parameters of the hypergeometric functions present opposite signs in the summation index n. In addition, we
see that [

α
(1)
−n, β

(1)
−n, γ

(1)
−n

]
=
[
γ

(1)
n ,β

(1)
n ,α

(1)
n

]
,
[
ᾱ

(1)
−n, β̄

(1)
−n, γ̄

(1)
−n

]
=
[
−γ̄(1)

n , β̄
(1)
n ,−ᾱ(1)

n

]
(70)

if µ1 = −ν1 − B2 − (B1/z0). Since n runs from minus to plus infinity in two-sided infinite series, both sets are in fact
equivalent to each other, having the coefficients rearranged as[

b
(1)
−n, b̄

(1)
−n

]
←→

[
b

(1)
n , (−1)nb̄

(1)
n

]
for µ1 = −ν1 −B2 − B1

z0
. (71)

As a consequence, when we consider the convergence of the expansions U∞i and Ū∞i , in the conditions (41), (42) and (43)
[valid for U∞i and U∞i ] n must be replaced by −n, as in the following.

2.5.2 Convergence of the Leaver-type solutions

We find that

• The expansions Ui(z) in series of regular confluent hypergeometric functions converge for finite values of z, the
convergence being undetermined when z →∞ – see Eq. (75).
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• When n → −∞ the ratio test assures convergence of U∞i (z) at z = ∞ if the conditions (74) are satisfied. When
n → ∞, the test assures that U∞i converge for |z| > |z0| (i = 1, · · · , 4) or |z − z0| > |z0| (i = 5, · · · , 8) but, by the
Raabe test, converge also at |z| = |z0| and |z − z0| = |z0| if the parameters of the equation satisfy the conditions
given in (72) and (73).

• When n→ −∞ the ratio test does not assure convergence of Ū∞i (z) at z =∞ (in fact, the test becomes inconclusive).
When n → ∞ the test assures that the Ū∞i converge for |z| > |z0| (i = 1, · · · , 4) or |z − z0| > |z0| (i = 5, · · · , 8)
but, by the Raabe test, converge also at |z| = |z0| and |z − z0| = |z0| if the parameters of the equation satisfy the
conditions given in (72) and (73).

The regions of convergence for U∞i (z) and Ū∞i (z) are (using the Raabe test for n→∞)

n→∞ : |z| ≥ |z0|, sign “=” if


Re
(
B2 + B1

z0

)
< 1 in

(
U∞1 , Ū∞1

)
,
(
U∞2 , Ū∞2

)
,

Re
(
B2 + B1

z0

)
> 1 in

(
U∞3 , Ū∞3

)
,
(
U∞4 , Ū∞4

)
,

(72)

n→∞ : |z − z0| ≥ |z0|, sign “=” if


Re
(
B1

z0

)
> −1 in

(
U∞5 , Ū∞5

)
,
(
U∞8 , Ū∞8

)
,

Re
(
B1

z0

)
< −1 in

(
U∞6 , Ū∞6

)
,
(
U∞7 , Ū∞7

)
.

(73)

The test is inconclusive if Re[B2 + (B1/z0)] = 1 in (72), and if Re[B1/z0] = −1 in (73). In contrast, the restrictions (42)
and (43) for the first group come from n→ −∞.

On the other hand, by taking the limit limz→∞U
∞
i and applying the Raabe test for n → −∞, we find that the U∞i

converge at z =∞ if

n→ −∞ : Re
[
iη + B2

2 − 1
]
< 0 for U∞1 , U∞5 ; Re

[
iη + B1

z0
+ B2

2

]
< 0 for U∞2 , U∞6 ;

Re
[
iη − B2

2 + 1
]
< 0 for U∞3 , U∞7 ; Re

[
iη − B1

z0
− B2

2

]
< 0 for U∞4 , U∞8 .

(74)

In contrast, conditions (41) for the first group result from the Raabe test when n→ +∞.
When z →∞, we find

U1(z)
(50)∼ eiωz z−iη−

B2
2

∞∑
n=−∞

b(1)
n + e−iωz ziη+ν1−B2

2

∞∑
n=−∞

Γn b
(1)
n (−2iωz)−n, Γn = Γ

(
n+ ν1 − iη + B2

2

)
,

where the ratio between the terms of the series becomes undetermined when n → −∞ due to the following relations
(obtained from the recurrence relations):

n→∞ :
b

(1)
n+1

b
(1)
n

∼− 2iωz0
n → 0

Γn+1 b
(1)
n+1 (−2iωz)−n−1

Γn b
(1)
n (−2iωz)−n

∼ z0z → 0,

n→ −∞ :
b

(1)
n−1

b
(1)
n

∼1 + 1
n

(
2− iη − B2

2

)
,

Γn−1 b
(1)
n−1 (−2iωz)−n+1

Γn b
(1)
n (−2iωz)−n

∼− 2iωz
n .

(75)

Therefore, the convergence of U1(z) is undetermined at z =∞, except for one-sided series with n ≥ 0.

3 Expansions in one-sided series of confluent hypergeometric functions

In this section, one-sided series solutions are obtained by truncating the two-sided series. If, for some values of the
parameters, the series end on the right-hand and on the left-hand side according (8), we get finite-series solutions; in this
case the convergence must be decided by examining each term of the series.

• In section 3.1, the two nonequivalent groups of one-sided series solutions with n ≥ 0 are obtained by setting µi =
νi = 0 in the two-sided series solutions. Some properties of solutions are displayed.

• In sections 3.2 and 3.3, the regions of convergence for one-sided solutions are obtained by restricting n to non-negative
values in the regions of the two-sided series.

• In section 3.4, we show that the two groups of one-sided series result also from the truncation of the same group of
two-sided series on the left-hand side (n ≥ 0) and on right-hand side (n ≤ 0).
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The one-sided solutions of the two groups are again denoted by
(
Ui, U

∞
i , Ū∞i

)
and

(
Ui,U

∞
i , Ū∞i

)
. To avoid misleading

interpretations, the expansions Ui and Ui must be rewritten in terms the coefficients b̄
(i)
n and b̄

(i)
n rather than in terms of

b
(i)
n and b

(i)
n . For this purpose we have provided the formulas which connect b̄

(i)
n and b̄

(i)
n with b

(i)
n and b

(i)
n . By expressing

Ui(z) in terms of b̄(i)n , Ui(z) in terms of b̄(i)
n , (76)

we suppress from the expansions the term Γ(c − a) introduced by the definition (20) for Φ̃(a, c; y). In fact, the factor
Γ(c− a) may lead to incorrect results when we use relations (8).

3.1 The two groups of one-sided series solutions

We require that the series of section 2 begin at n = 0, by choosing the parameters µi and νi such that

α
(i)
−1 = ᾱ

(i)
−1 = 0 in section 2.2 and appendix A, α

(i)
−1 = ᾱ

(i)
−1 = 0 in section 2.5 (77)

according to (8). To satisfy these conditions it is sufficient to take µi = 0 in the first case and νi = 0 in the second case.
This yields the two groups of one-sided solutions with n ≥ 0, namely,[

Ui(z), U
∞
i (z), Ū∞i (z)

] ∣∣∣
µi=0

,
[
Ui(z),U

∞
i (z), Ū∞i (z)

] ∣∣∣
νi=0

. (78)

The recurrence relations (21) take the forms

α
(i)
0 b

(i)
1 + β

(i)
0 b

(i)
0 = 0, α

(i)
n b

(i)
n+1 + β

(i)
n b

(i)
n + γ

(i)
n b

(i)
n−1 = 0, (n ≥ 1);

ᾱ
(i)
0 b̄

(i)
1 + β̄

(i)
0 b̄

(i)
0 = 0, ᾱ

(i)
n b̄

(i)
n+1 + β̄

(i)
n b̄

(i)
n + γ̄

(i)
n b̄

(i)
n−1 = 0, (n ≥ 1)

(79)

for the first group, and analogous relations for the second group. These equations can be written in a form similar to (5),
namely, 

β
(i)
0 α

(i)
0 0

γ
(i)
1 β

(i)
1 α

(i)
1

. . .
. . .

. . .

γ
(i)
n β

(i)
n α

(i)
n

. . .
. . .

. . .





b
(i)
0

b
(i)
1

...

b
(i)
n

...


= 0, (80)

where the determinant of the tridiagonal matrix must vanish. This constitutes the characteristic equation which is equiv-
alent to the continued fraction

β
(i)
0 =

α
(i)
0 γ

(i)
1

β
(i)
1 −

α
(i)
1 γ

(i)
2

β
(i)
2 −

α
(i)
2 γ

(i)
3

β
(i)
3 −

· · · . (81)

Contrary to the case of two-sided series, the solutions of the two groups (78) are not equivalent to each other because
now n assumes only non-negative values. We regard two sets which are used in section 3.4. Thus, taking µ1 = 0 in (24),
we have [

U1(z)

U∞1 (z)

]
= eiωz

∞∑
n=0

b(1)
n

 Φ̃
(
iη + B2

2 ,−n−
B1

z0
;−2iωz

)
Ψ
(
iη + B2

2 ,−n−
B1

z0
;−2iωz

)
 , iη + B2

2 6= 0,−1,−2, · · · ,

Ū∞1 (z) = e−iωz
∞∑

n=−∞
b̄
(1)
n Ψ

(
−n− iη − B1

z0
− B2

2 ,−n−
B1

z0
; 2iωz

) (82)

where the coefficients b
(1)
n and b̄

(1)
n satisfy the relations (79) with µ1 = 0 in (25a) and (25b). Since b̄

(1)
n = (−1)n

Γ [−n− iη −B1/z0 −B2/2]b
(1)
n , we have

U1(z) = eiωz
∞∑
n=0

(−1)nb̄
(1)
n

Γ[−n− (B1/z0)]
Φ
(
iη + B2

2 ,−n−
B1

z0
;−2iωz

)
,
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as required in (76). On the other side, for ν1 = 0 the solutions (65) take the form[
U1(z)

U∞1 (z)

]
= eiωz

∞∑
n=0

b(1)
n

[
Φ̃
(
iη + B2

2 , n+B2;−2iωz
)

Ψ
(
iη + B2

2 , n+B2;−2iωz
) ] , iη + B2

2 6= 0,−1,−2, · · · ,

Ū∞1 (z) = e−iωz
∞∑
n=0

(−1)nb̄
(1)
n Ψ

(
n− iη + B2

2 n+B2; 2iωz
)
,

(83)

where b̄
(1)
n = Γ

[
n − iη + (B2/2)

]
b

(1)
n . The coefficients of the recurrence relations are obtained by putting ν1 = 0 in (66a)

and (66b).
In addition to different domains of convergence for the two groups, we find that:

• Solutions of the first group do not admit the Leaver limit z0 → 0, in opposition to solutions of the second group [4].
• The solutions Ui(z) and Ui+4(z) of the second group are linearly dependent, that is,

Ui+4(z) ∝ Ui(z), i = 1, 2, 3, 4. (84)

The Leaver limit [2] is important because, when z0 = 0, the CHE (1) reduces to the double-confluent Heun equation
(DCHE)

z2 d
2U

dz2
+ (B1 +B2z)

dU

dz
+
(
B3 − 2ηωz + ω2z2

)
U = 0, (85)

where z = 0 and z = ∞ are both irregular singularities. Most of the solutions for the DCHE are generated by applying

the limit z0 → 0 on solutions of the CHE [2, 4, 7, 17]. The first group does not admit the Leaver limit because β
(i)
n = β̃

(i)
n

goes to infinity if z0 →∞, as we can check.
On the other side, on account of the transformations (16), it is sufficient to discuss only one pair of the relations (84),

for example, (U1,U5). By using (14) and (20), we write

U1(z)
(14,20,83)

= e−iωz
∞∑
n=0

b̄(1)
n

Γ(n+B2)Φ
[
n− iη + B2

2 , n+B2; 2iωz
]
,

U5(z)=T4U1(z) = e−iωz
∞∑
n=0

b̄(5)
n

Γ(n+B2)Φ
[
n− iη + B2

2 , n+B2; 2iω(z − z0)
]
,

(86)

To show that these solutions are linearly dependent, we use the addition theorem [9]

Φ(a, c;x+ y) =
Γ(c)

Γ(a)

∞∑
m=0

Γ(a+m)ym

m! Γ(c+m)
Φ(a+m, c+m;x), (87)

together with the Cauchy product

∞∑
n=0

fn

∞∑
m=0

gnm =

∞∑
j=0

hj , where hj =

j∑
k=0

fk g
k
j−k. (88)

By taking x = 2iωz and y = −2iωz0, we obtain

U5(z)
(86,87)

= e−iωz
∞∑
n=0

b̄
(5)
n

Γ
[
n− iη + B2

2

] ∞∑
m=0

Γ[n+m−iη+
B2
2 ][−2iωz0]m]

m! Γ[n+m+B2] Φ
[
n+m− iη + B2

2 , n+m+B2; 2iωz
]

(88)
= e−iωz

∞∑
j=0

1
Γ(j+B2)

j∑
k=0

b
(5)
k

[−2iωz0]j−k

(j−k)! Φ
[
j − iη + B2

2 , j +B2; 2iωz
]
,

that is,

U5(z) = e−iωz
∞∑
n=0

1
Γ(n+B2)

[ n∑
k=0

[−2iωz0]n−k

(n−k)! b
(5)
k

]
Φ
[
n− iη + B2

2 , n+B2; 2iωz
]
.

So, the right-hand side of this equation is identical to the expression (86) for U1(z) if

b̄(1)
n =

n∑
k=0

(−2iωz0)n−k

(n− k)!
b̄

(5)
k .
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3.2 Convergence of the one-sided solutions of the first group

The following results come from section 2.4 by considering the ratio test for n→∞ only.

• The solutions Ui(z) in series of regular confluent hypergeometric functions converge for any finite value of z. The
ratio tests are inconclusive at z =∞.

• For the solutions U∞i (z) in series of irregular functions the ratio test does not exclude any finite value of z but the
functions Ψ(a, c; y) are not appropriate for y = 0 and, consequently, the U∞i are not valid at z = 0 (if i = 1, 2, 3, 4)
and at z = z0 (if i = 5, 6, 7, 8). The expansions U∞i (z) converge as well at z =∞ under the conditions (89).

• The solutions Ū∞i do not converge at z =∞; the Ū∞i converge only for finite z, excepting z = 0 (if i = 1, 2, 3, 4) and
z = z0 (if i = 5, 6, 7, 8).

According to the Raabe test the U∞i converge at z =∞ if

Re
[
iη + B2

2 − 1
]
< 0 for U∞1 , U∞5 ; Re

[
iη + B1

z0
+ B2

2

]
< 0 for U∞2 , U∞6 ;

Re
[
iη − B2

2 + 1
]
< 0 for U∞3 , U∞7 ; Re

[
iη − B1

z0
− B2

2

]
< 0 for U∞4 , U∞8 .

(89)

Notice that the one-sided expansion U∞i (z) may converge for any value of z, excepting z = 0 (if i = 1, 2, 3, 4) and z = z0

(if i = 5, 6, 7, 8). This fact will become useful in section 4.3.

3.3 Convergence of the one-sided solutions of the second group

The following results come from section 3.2 by considering the ratio test for n→∞ only.

• The expansions Ui(z) in series of regular confluent hypergeometric functions converge for finite values of z.
• Both, the expansions U∞i (z) and Ū∞i (z), converge for |z| > |z0| if i = 1, · · · , 4 and for |z − z0| > |z0| if i = 5, · · · , 8.

By the Raabe test, U∞i and Ū∞i converge also at |z| = |z0| and |z − z0| = |z0| if the parameters of the equation
satisfy the conditions given in (90) and (91).

• The three series expansions (Ui,U
∞
i , Ū∞i ) can converge at z =∞. See, however, comments after Eq. (93).

By the Raabe test the regions of convergence for U∞i (z) and Ū∞i (z) are

|z| ≥ |z0|, sign “=” if


Re
(
B2 + B1

z0

)
< 1 in

(
U∞1 , Ū∞1

)
,
(
U∞2 , Ū∞2

)
;

Re
(
B2 + B1

z0

)
> 1 in

(
U∞3 , Ū∞3

)
,
(
U∞4 , Ū∞4

)
;

(90)

|z − z0| ≥ |z0|, sign “=” if


Re
(
B1

z0

)
> −1 in

(
U∞5 , Ū∞5

)
,
(
U∞8 ; Ū∞8

)
;

Re
(
B1

z0

)
< −1 in

(
U∞6 , Ū∞6

)
,
(
U∞7 , Ū∞7

)
.

(91)

The test is inconclusive if Re[B2 + (B1/z0)] = 1 in (90), and if Re[B1/z0] = −1 in (91).
Although the one-sided expansions Ui in series of regular functions converge for any z, we have to consider the behavior

of the solutions when z →∞. For U1(z) we find

U1(z)
(75)∼ eiωz z−iη−

B2
2

∞∑
n=0

b(1)
n + e−iωz ziη−

B2
2 Γ

[
B2

2 − iη
]
b

(1)
0 , z →∞, (92)

which is a superposition of

U∞1 (z)∼eiωz z−iη−
B2
2

∞∑
n=0

b(1)
n , Ū∞1 (z)∼e−iωzziη−

B2
2 Γ

[
B2

2 − iη
]
b

(1)
0 . (93)

Thus, when z →∞, U1 is a linear combination of the two asymptotic behaviors (2) and, consequently, may be inappropriate
for some applications.
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3.4 The two possibilities for truncating the two-sided series

By using conditions (8), we show that the two groups of one-sided series solutions can be obtained by truncating the
same version of two-sided series, (Ui, U

∞
i , Ū∞i ) or (Ui,U

∞
i , Ū∞i ), on the left (n ≥ 0) or on right-hand side (n ≤ 0). We

choose the first version.
For 0 ≤ n <∞, the first set of solutions (24) in notation of Eqs. (44a) and (55) gives[

U1(z), U∞1 (z)
]
n≥0

= eiωz
∞∑
n=0

b(1)
n n(y),

[
Ū∞1 (z)

]
n≥0

= e−iωz
∞∑
n=0

b̄(1)
n ψn(y). (94)

Thence, Eq. (35) for U1 and U∞1 yields

α−1 b
(1)
0 −1(y) +

[
α

(1)
0 b

(1)
1 + β

(1)
0 b

(1)
0

]
0(y)+

∞∑
n=1

[
α

(1)
n b

(1)
n+1 + β

(1)
n b

(1)
n + γ

(1)
n b

(1)
n−1

]
n(y) = 0

and Eq. (40) for Ū∞1 yields

ᾱ−1 b̄
(1)
0 ψ−1(y) +

[
ᾱ

(1)
0 b̄

(1)
1 + β̄

(1)
0 b̄

(1)
0

]
ψ0(y)+

∞∑
n=1

[
ᾱ

(1)
n b̄

(1)
n+1 + β̄

(1)
n b̄

(1)
n + γ̄

(1)
n b̄

(1)
n−1

]
ψn(y) = 0,

where the coefficients of m and ψm must vanish. In particular, since we are supposing that b
(1)
0 6= 0 and b̄

(1)
0 6= 0,

α
(1)
−1

(25a)
= −2iωz0µ1 = 0, ᾱ

(1)
−1

(25b)
= −2iωz0µ1

(
µ1 + iη + B2

2 + B1

z0

)
= 0.

By taking µ1 = 0 we find that the right-hand sides of (94) reduce to the one-sided series solutions (82). For Ū∞1 it is also
possible to take µ1 = −iη −B2/2−B1/z0 but we do not consider this case.

Now we show that for −∞ < n ≤ 0, the first set of solutions (24) reduces to the one-sided series solutions (83). By
using again the notation of Eqs. (44a) and (55), we have

[
U1(z), U∞1 (z)

]
n≤0

= eiωz
0∑

n=−∞
b(1)
n n(y),

[
Ū∞1 (z)

]
n≤0

= e−iωz
0∑

n=−∞
b̄(1)
n ψn(y).

which is transformed into[
U1(z), U∞1 (z)

]
n≤0

= eiωz
∞∑
m=0

b
(1)
−m−m(y),

[
Ū∞1 (z)

]
n≤0

= e−iωz
∞∑
m=0

b̄
(1)
−mψ−m(y). (95)

by replacing n by −m on the right-hand side. In the following we find that, in fact, the right-hand sides of these equations
coincide with the solutions (83). First, if n ≤ 0 Eq. (35) for U1 and U∞1 becomes

0∑
n=−∞

[
γ

(1)
n+1 b

(1)
n n+1(y) + β

(1)
n b

(1)
n n(y) + α

(1)
n−1 b

(1)
n n−1(y)

]
=

γ
(1)
1 b

(1)
0 1(y) +

[
γ

(1)
0 b

(1)
−1 + β

(1)
0 b

(1)
0

]
0(y) +

−2∑
n=−∞

γ
(1)
n+1 b

(1)
n n+1(y) +

−1∑
n=−∞

β(1)
n b(1)

n n(y) +

0∑
n=−∞

α
(1)
n−1 b

(1)
n n−1(y) = 0

which can be rewritten as

γ
(1)
1 b

(1)
0 1(y) +

[
γ

(1)
0 b

(1)
−1 + β

(1)
0 b

(1)
0

]
0(y) +

−1∑
m=−∞

[
γ

(1)
m b

(1)
m−1 + β

(1)
m b

(1)
m + α

(1)
m b

(1)
m+1

]
m(y) = 0. (96)

Similarly, if n ≤ 0 Eq. (40) for Ū∞1 leads to

γ̄
(1)
1 b̄

(1)
0 ψ1(y) +

[
γ̄

(1)
0 b̄

(1)
−1 + β̄

(1)
0 b̄

(1)
0

]
ψ0(y) +

−1∑
m=−∞

[
γ̄

(1)
m b̄

(1)
m−1 + β̄

(1)
m b̄

(1)
m + ᾱ

(1)
m b̄

(1)
m+1

]
ψm(y) = 0. (97)
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Eqs. (96) and (97) are satisfied if the coefficients of m and ψm vanish. In particular, since we are supposing that b
(1)
0 6= 0

and b̄
(1)
0 6= 0, we require that

γ
(1)
1

(25a)
= −

[
1 + µ1 + iη + B2

2 + B1

z0

] [
µ1 +B2 + B1

z0

]
= 0, γ̄

(1)
1

(25b)
= −

[
µ1 +B2 + B1

z0

]
= 0.

Thus, we can satisfy both equations by taking µ1 = −B2 − B1/z0. In addition, by putting m = −n, Eqs. (96) and (97)
are rearranged as[

γ
(1)
0 b

(1)
−1 + β

(1)
0 b

(1)
0

]
0(y) +

∞∑
n=1

[
γ

(1)
−n b

(1)
−n−1 + β

(1)
−n b

(1)
−n + α

(1)
−n b

(1)
−n+1

]
−n(y) = 0,[

γ̄
(1)
0 b̄

(1)
−1 + β̄

(1)
0 b̄

(1)
0

]
ψ0(y) +

∞∑
n=1

[
γ̄

(1)
−n b̄

(1)
−n−1 + β̄

(1)
−n b̄

(1)
−n + ᾱ

(1)
−n b̄

(1)
−n+1

]
ψ−n(y) = 0.

(98)

Thence, by means of relations (70) and (71) with ν1 = 0, Eqs. (95) and (98) reproduce the one-sided series solutions (83),
as stated above.

4 Applications for a two-level system

Elsewhere [1] we have seen that the one-sided solutions of the first group may be used to compute the radial part of the
wavefunctions for bound states of hydrogen moleculelike ions. In this section we show that such group of solutions is also
suitable to solve a time-dependent two-state quantum system given by Ishkhanyan and Gregoryan [3]. For specific values
of the parameters, we find finite-series solutions which can be rewritten as power-series solutions; for other values, we find
solutions in infinite series of irregular confluent hypergeometric functions. These solutions are bounded for all values of the
independent variable z [z = (1 + it)/2] and vanish when the time t goes to infinity.

4.1 The Lorentzian model

The two-state system is described by the pair of equations [3]

i
dA1(t)

dt
= e−iδ(t) Ω(t) A2(t), i

dA2(t)

dt
= eiδ(t) Ω(t) A1(t), (99)

where Ω(t) (called the Rabi frequency) and δ(t) (detuning modulation) are real functions of the time t. The decoupled
equation for A2 is

d2A2

dt2
+

[
−idδ

dt
− 1

Ω

dΩ

dt

]
dA2

dt
+ Ω2A2 = 0, [ when Ω(t) 6= 0].

From the several classes of systems obeying the CHE [3], we select one representing a pulse with Lorentzian shape, given
by

Ω(t) =
Ω0

1 + t2
,

dδ

dt
= ∆0 +

∆1

1 + t2
, (100)

where Ω0, ∆0 and ∆1 are constants. Since Ω(t = ±∞) = 0, Eqs. (99) allow to impose

A1(t = ±∞) = A2(t = ±∞) = 0. (101)

For (100), the second-order equation for A2(t) reads

(
1 + t2

) d2A2

dt2
+
[
−i∆0

(
1 + t2

)
+ 2t− i∆1

] dA2

dt
+

Ω2
0

1 + t2
A2 = 0 (102)

which, by the substitutions

A2(t) = e∆0z
[

z
z−1

]α
U(z), z = 1+it

2 , α = 1
4 (∆1 + 2R) , R =

√
Ω2

0 +
∆2

1

4 , (103)

is transformed into the CHE (1)

z(z − 1)d
2U
dz2 + (−R− 1 + 2z)dUdz +

[
∆0

(
1 +

∆1

2

)
+ 2∆0(z − 1)−∆2

0z(z − 1)

]
U = 0.
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with parameters

z0 = 1, B1 = −1−R, B2 = 2, B3 = ∆0

[
1 + 1

2∆1

]
, iη = 1, iω = ∆0. (104)

If ∆0 = 0 the above equation is not a CHE and can be easily integrated.
By (103) the parameter R is a positive real number. For R = 2, 3, · · · , we will find finite-series solutions which are

bounded for any value of t and satisfy conditions (101), as stated in Ref. [3]. These terminating series are sometimes
called exact isolated solutions (see [18] and references therein). According to a definition given by Kalnins, Miller and
Pogosyan [19], in the present case we have a quasiexactly solvable problem whose coefficients of the series satisfy three-term
recurrence relations. However, for R 6= 1, 2, · · · , we find infinite-series solutions which are also convergent and bounded for
any value of t. More precisely:

• If R = 2, 3, · · · , the one-sided series expansions U∞1 and U∞7 in terms of irregular confluent hypergeometric functions
lead to bounded finite-series solutions for Eq. (102) (if R = 2 and ∆1 = 0 there is no finite-series solution). These
can also be obtained from power series expansions.

• If R 6= 1, 2, 3, · · · , the one-sided series solutions U∞2 and U∞6 in terms of irregular confluent hypergeometric functions
lead to bounded infinite-series solutions for Eq. (102). These cannot be obtained from power series expansions.

The two types of solutions satisfy the conditions (101). We have found no solution appropriate for R = 1, that is, for
1 = Ω2

0 + (∆2
1/4).

4.2 Finite-series solutions for R = 2, 3, · · ·
By inserting the expansion U∞1 given in (82) into (103) , for R = 2, 3, · · · we obtain the following finite-series solutions

A
(1)
2 (t) ,

A
(1)
2 [t(z)]

(82,103)
= e∆0z

(
z
z−1

)α
U∞1 (z)

(82,104)
= e2∆0z

(
z
z−1

)α R−2∑
n=0

b
(1)
n Ψ (2, R+ 1− n;−2∆0z) , α = ∆1+2R

4 , (105a)

where, in the recurrence relations (79) for b
(1)
n , we have

α
(1)
n = −2∆0(n+ 1), β

(1)
n = n [n+ 1− 2R] +R [R− 1] + ∆0

[
2−R+ 2n+ 1

2∆1

]
,

γ
(1)
n = − [n+ 1−R] [n−R] . (105b)

The summation is restricted to 0 ≤ n ≤ R − 2 because γ
(1)
n=R−1 = 0 requires that n ≤ R − 2 as consequence of (8). For

µ7 = 0 the U∞7 , written in (A.6), gives a solution A
(7)
2 ,

A
(7)
2 [t(z)] = e2∆0z

(
z
z−1

)α−R R−2∑
n=0

b
(7)
n Ψ (2, R+ 1− n;−2∆0(z − 1)) , (106a)

where, in the relations (79) for b
(7)
n , we have

α
(7)
n = 2∆0(n+ 1), β

(7)
n = n [n+ 1− 2R] +R [R− 1] + ∆0

[
−2 +R− 2n+ 1

2∆1

]
,

γ
(7)
n = − [n+ 1−R] [n−R] . (106b)

The function exp (2∆0z) = exp [∆0(1 + it)] is a finite factor. Thence, from Ψ(a, c; y) ∼ y−a when y → ∞, it follows

that A
(1)
2 and A

(7)
2 vanish when t→ ±∞, as required in (101). Moreover, the finite-series solutions can be written in terms

of elementary functions by using the relation (60), that is,

Ψ(a, a+ l + 1; y) =
l! y−a

Γ(a)

l∑
m=0

Γ(a+m) y−m

m! (l −m)!
, l = 0, 1, 2, · · · .

So, if R = 2, 3, · · · , we find

A
(1)
2 [t(z)] = e2∆0z

[
z
z−1

]α
1
z2

R−2∑
n=0

(R− n− 2)! b(1)
n

R−2−n∑
m=0

(m+ 1)(−2∆0z)
−m

(R− 2− n−m)!
,

A
(7)
2 [t(z)] = e2∆0z

[
z
z−1

]α−R
1

(z−1)2

R−2∑
n=0

(R− n− 2)! b(7)
n

R−2−n∑
m=0

(m+ 1)[−2∆0(z − 1)]−m

(R− 2− n−m)!
.

(107)
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From the above expressions we see that

A
(1)
2 or A

(7)
2 ∝ e2∆0z

[
z
z−1

]α
z−R ×

[
polynomial of degree (R− 2) in z or (z − 1)

]
.

This indicates that the solutions (107) must be equivalent to the ones obtained by using the power series of Appendix B.
In effect, we find

Â
(2)
2 [t(z)]

(103, B.2)
= e2∆0z

(
z
z−1

)α
z−R

R−2∑
n=0

b̂(2)
n (z − 1)n, R = 2, 3, · · ·

Â
(6)
2 [t(z)]

(103, B.4)
= e2∆0z

(
z
z−1

)α
z−R

R−2∑
n=0

b̂(6)
n (−z)n, R = 2, 3, · · ·

(108)

where, in the recurrence relations (79) for b̂
(2)
n and b̂

(6)
n , we have

α̂
(2)
n = (n+ 1)(n+ 1−R), γ̂

(2)
n = 2∆0 [n+ 1−R] ,

β̂
(2)
n = n [n+ 1 + 2∆0 − 2R] +R [R− 1] + ∆0

[
2−R+ 1

2∆1

]
. (109)

and

α̂
(6)
n = (n+ 1)(n+ 1−R), γ̂

(6)
n = −2∆0 [n+ 1−R] ,

β̂
((6)
n = n [n+ 1− 2∆0 − 2R] +R [R− 1] + ∆0

[
R− 2 + 1

2∆1

]
. (110)

Thus, from now on we deal with the solutions (108).
In the matrix form (80), the recurrence relations for finite series (0 ≤ n ≤ R− 2) read

β0 α0 0
γ1 β1 α1

0 γ2 β2 α2

. . .
. . .

. . .

γR−2 βR−2




b0
b1
b2
...
bR−2

 =


0
0
0
...
0

 , R = 2, 3, · · · , (111)

where we have omitted the superscripts. The vanishment of the determinant of the above matrix imposes constraints

between the constants ∆0 and ∆1. Moreover, these relations allow writing b̂
(2)
n and b̂

(6)
n in terms of b̂

(2)
0 and b̂

(6)
0 , respectively.

We have no proof that Â
(2)
2 and Â

(6)
2 are linearly dependent for any integer R ≥ 2, but we check that this is true for

R = 2, 3, 4. If R = 2 both solutions are dependent because

Â
(2)
2 [t(z)]

∣∣∣
R=2, ∆1 6=0

∝ Â(6)
2 [t(z)]

∣∣∣
R=2, ∆1 6=0

∝ e2∆0z
(

z
z−1

)α
1
z2 , α = 1 + ∆1

4 , ∆0 = − 4
∆1
.

For ∆1 = 0 we must take b̂
(2)
0 = b̂

(6)
0 = 0 (trivial solution) in order to fulfill the relation β̂

(2)
0 b̂

(2)
0 = β̂

(6)
0 b̂

(6)
0 = 0, where

β̂
(2)
0 = β̂

(6)
0 = ∆0∆1/2 + 2. If ∆1 6= 0 we get a nontrivial solution with ∆0 = −4/∆1.

For R = 3, the recurrence relations give b̂
(2)
1 = −

(
β̂

(2)
0

/
α̂

(2)
0

)
b̂
(2)
0 and b̂

(6)
1 = −

(
β̂

(6)
0

/
α̂

(6)
0

)
b̂
(6)
0 . Hence we find

Â
(2)
2 [t(z)]

∣∣
R=3

= b̂
(2)
0 e2∆0z

[
z
z−1

]α
1
z3

[
1− β̂

(2)
0

α̂
(2)
0

(z − 1)

]
, α = ∆1+6

4 ,

Â
(6)
2 [t(z)]

∣∣
R=3

= b̂
(6)
0 e2∆0z

[
z
z−1

]α
1
z3

[
1 +

β̂
(6)
0

α̂
(6)
0

z

]
,

(112)

where (for R = 3)

α̂
(2)
0 = −2, β̂

(2)
0 = 6 + ∆0

(
−1 + 1

2∆1

)
, β̂

(2)
1 = 2 + ∆0

(
1 + 1

2∆1

)
, γ̂

(2)
1 = −2∆0,

α̂
(6)
0 = −2, β̂

(6)
0 = 6 + ∆0

(
1 + 1

2∆1

)
, β̂

(6)
1 = 2 + ∆0

(
−1 + 1

2∆1

)
, γ̂

(6)
1 = 2∆0,

(113)

whereas the condition on the determinant is

β̂
(i)
0 β̂

(i)
1 − α̂

(i)
0 γ̂

(i)
1 = 0, [i = 2, 6] ⇔

[
(∆1)2 − 4

]
(∆0)2 + 16∆1∆0 + 48 = 0. (114)
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The last equation establishes following relations between ∆0 and ∆1:

∆0 = 3
2 if ∆1 = −2; ∆0 = − 3

2 if ∆1 = 2; ∆0 = 8
4−(∆1)2

[
∆1 ±

√
3 + 1

4 (∆1)2
]

if ∆1 6= ±2.

To show the linear dependence, we write the Wronskian between the solutions as

W (z) = W
(
Â

(2)
2 , Â

(6)
2

)
= Â

(2)
2

dÂ
(6)
2

dz − Â
(6)
2

dÂ
(2)
2

dz . (115)

Thence, the solutions are linearly dependent since

W (z)
∣∣
R=3

(112,115)
= b̂

(2)
0 b̂

(6)
0

[
e2∆0z

(
z
z−1

)α
1
z3

]2 [
α̂

(2)
0 β̂

(6)
0 +β̂

(2)
0 β̂

(6)
0 +α̂

(6)
0 β̂

(2)
0

α̂
(2)
0 α̂

(6)
0

]
(113)
= b̂

(2)
0 b̂

(6)
0

[
e2∆0z

4

(
z
z−1

)α
1
z3

]2 { [
(∆1)2 − 4

]
(∆0)2 + 16∆1∆0 + 48

}
(114)
= 0.

For R = 4, the recurrence relations give

b̂
(i)
1 = − β̂

(i)
0

α̂
(i)
0

b̂
(i)
0 , b̂

(i)
2 =

(
β̂

(i)
0 β̂

(i)
1

α̂
(i)
0 α̂

(i)
1

− γ̂
(i)
1

α̂
(i)
1

)
b̂
(i)
0 , [i = 2, 6] (116)

while Eqs. (109) and (110) give

α̂
(2)
0 = −3, α̂

(2)
1 = −4, β̂

(2)
0 = 12 + ∆0

[
−2 + 1

2∆1

]
, β̂

(2)
1 = 6 + 1

2∆0∆1,

β̂
(2)
2 = 2 + ∆0

[
2 + 1

2∆1

]
, γ̂

(2)
1 = −4∆0, γ̂

(2)
2 = −2∆0

and

α̂
(6)
0 = α̂

(2)
0 = −3, α̂

(6)
1 = α̂

(2)
1 = −4 β̂

(6)
0 = 12 + ∆0

[
2 + 1

2∆1

]
, β̂

(6)
1 = β̂

(2)
1 ,

β̂
(6)
2 = 2 + ∆0

[
−2 + 1

2∆1

]
, γ̂

(6)
1 = −γ̂(2)

1 , γ̂
(6)
2 = −γ̂(2)

2 .

Hence we find [α = 2 + (∆1/4)]

Â
(2)
2 [t(z)]

∣∣∣
R=4

= b̂
(2)
0

e2∆0z

12z4

[
z
z−1

]α [
12 + 4β̂

(2)
0 (z − 1) +

(
β̂

(2)
0 β̂

(2)
1 − 12∆0

)
(z − 1)2

]
,

Â
(6)
2 [t(z)]

∣∣∣
R=4

= b̂
(6)
0

e2∆0z

12z4

[
z
z−1

]α [
12− 4β̂

(6)
0 z +

(
β̂

(6)
0 β̂

(2)
1 + 12∆0

)
z2
]
.

(117)

The relations between ∆0 and ∆1 are determined from the conditions

β̂
(i)
0 β̂

(i)
1 β̂

(i)
2 − α̂

(i)
1 β̂

(i)
0 γ̂

(i)
2 − α̂

(i)
0 β̂

(i)
2 γ̂

(i)
1 = 0, [i = 2, 6]

which, in both cases, are equivalent to

1
2∆1

[
1
4 (∆1)2 − 1

]
(∆0)

3
+ [5∆1 − 32] (∆0)

2
+ 54∆1∆0 + 144 = 0. (118)

This relation permits to show that the Wronskinan of the solutions (117) vanishes and, so, we keep only A
(2)
2 (t). Besides

this, the relation yields two values for ∆0 in each of the cases: ∆1 = 0, ∆1 = 2 and ∆1 = −2; otherwise, we get three

values for ∆0. The explicit forms of the wavefunctions are generated by introducing in A
(2)
2 (t) the parameters (∆0,∆1)

which satisfy the characteristic equation (118).
Notice the forward procedure used for computing the series coefficients, that is, by means of the recurrence relations,

b̂0 leads to b̂1, b̂2, · · · , as in (116). Infinite-series solutions deal with a backward computation.

4.3 Infinite-series solutions for R 6= 1, 2, 3, · · ·
For R 6= 1, 2, 3, · · · there are many infinite-series solutions which, however, are not bounded for all values of z. So, the

solutions (105a) and (106a) become infinite-series expansions which do not converge at z =∞ in virtue of conditions (89).
Similarly, the expansions (108) become infinite series which are not convergent at z =∞. Bounded infinite-series solutions
for R 6= 1, 2, 3, · · · result from the one-sided solutions U∞2 and U∞6 , as aforementioned.
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Thus, by inserting U∞2 and U∞6 (with µ2 = µ6 = 0) into Eq. (103) we find

A
(2)
2 (t)

(103, A.1)
= e2∆0z 1

zR

[
z
z−1

]α ∞∑
n=0

b
(2)
n Ψ [2−R, 1−R− n;−2∆0z] ,

A
(6)
2 (t)

(103, A.5)
= e2∆0z

zR

[
z
z−1

]α ∞∑
n=0

b
(6)
n Ψ [2−R, 1−R− n;−2∆0(z − 1)] ,

(119)

where, in the recurrence relations (79) for b
(2)
n ,

α
(2)
n = −2∆0[n+ 1], β

(2)
n = n [n+ 1 + 2∆0] + ∆0

[
2−R+ 1

2∆1

]
,

γ
(2)
n = − [n+ 1] [n−R] ,

and, in the relations for b
(6)
n ,

α
(6)
n = 2∆0[n+ 1], β

(6)
n = n [n+ 1− 2∆0] + ∆0

[
R+ 1

2∆1

]
, γ

(6)
n = − [n+ 1] [n−R] .

These solutions are convergent for any finite z (|z| ≥ 1/2) and also at z =∞ according to (89). Moreover, they satisfy the
condition (101) since Ψ(a, c; y) ∼ y−a when y →∞.

We do not know if the expansions (119) are linearly dependent or independent. Anyway, they supply an analytical
starting point for constructing solutions for R 6= 1, 2, 3, · · · . As in the cases concerning the ordinary spheroidal wave
equation [6, 20, 21], this problem demands solutions for the characteristic equation which affords relations between the

parameters of the CHE, and the generation of the series coefficients b
(i)
n . The actual computations regard solutions truncated

at a some large n.
The characteristic equation may be solved by the continued fraction method which relies on Eq. (81) and depends on

the availability of an initial approximated solution. On the other side, there is the tridiagonal matrix technique [20] which
is based on the determinant of the matrix defined in Eq. (80). Falloon proposes to use this method for generating accurate
starting estimates for the first method [21].

After solving the characteristic equation it is necessary to construct the series coefficients of the wavefunctions. This
includes a backward procedure as a consequence of the fact that the series convergence is established for minimal solutions
of the recurrence relations. To clarify this point, firstly we write the relations (79) as

α
(i)
n

b
(i)
n+1

b
(i)
n

+ β
(i)
n + γ

(i)
n

b
(i)
n−1

b
(i)
n

= 0. (120)

As an illustration we consider A
(2)
2 (t). Then, when n is large we find

2∆0

[
1 + 1

n

] b(2)
n+1

b
(2)
n

−
[
n+ 1 + 2∆0

]
+
[
n+ 1−R

]
b
(2)
n−1

b
(2)
n

= 0,

which is satisfied by

b
(2)
n+1

b
(2)
n

∼ 1− R
n ⇔ b

(2)
n−1

b
(2)
n

∼ 1 + R
n or

b
(2)
n+1

b
(2)
n

∼ n
2∆0

⇔ b
(2)
n−1

b
(2)
n

∼ 2∆0

n .

The minimal solution for b
(2)
n [10] (which assures the convergence of A

(2)
2 ) is

b
(2)
n+1

b
(2)
n

∼ 1− R
n .

So, for some large n = N , we set b
(2)
N+1/b

(2)
N = 1 and write Eq. (120) for A

(2)
2 (t) as

b(2)
n

b
(2)
n−1

= [n+ 1−R]

[
n+ 1 + 2∆0 − 2∆0

(
n+1
n

) b(2)
n+1

b
(2)
n

]−1

.

Hence, for n = 1, · · · , N we find

b
(2)
1

b
(2)
0

= 2−R
2+2∆0−4∆0

[
b
(2)
2

/
b
(2)
1

] , b
(2)
2

b
(2)
1

= 3−R
3+2∆0−3∆0

[
b
(2)
3

/
b
(2)
2

] , · · ·

b
(2)
N

b
(2)
N−1

= N+1−R
N+1+2∆0−2∆0[N+1

N ]
[
b
(2)
N+1

/
b
(2)
N

] , b
(2)
N+1

b
(2)
N

= 1.

By iterating these results backward we obtain the ratios between successive coefficients: b
(2)
N /b

(2)
N−1, · · · , b(2)

2 /b
(2)
1 , b

(2)
1 /b

(2)
0 .

Only after this, we can write b
(2)
1 , b

(2)
2 , · · · , b(2)

N+1 in terms of b
(2)
0 , as in the case of finite-series solutions.
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5 Concluding remarks

We have investigated a group of two-sided series solutions for the CHE, constituted by sets of three expansions in
series of regular and irregular confluent hypergeometric functions. Each set is represented by two equivalent expressions,
(Ui, U

∞
i , Ū∞i ) and (Ui,U

∞
i , Ū∞i ), which differ from one another basically by sign of the summation index n which appears

in the parameters of the hypergeometric functions – compare, for example, (24) with (65). In section 2.2, the two-sided sets
(Ui, U

∞
i , Ū∞i ) have been obtained as generalizations of the one-sided solutions that we have found elsewhere [1]. On the

other side, the sets (Ui,U
∞
i , Ū∞i ) represent the two-sided solutions found by Leaver in 1986, supplemented by solutions

generated through the transformations (16) and having the regions of convergence improved by the Raabe test.
As a matter of fact, in the present case, the ratio tests hold only for finite values of the variable z and, thus, it is

necessary to take into account the behavior of the solutions for large values of z. In this manner, we have seen that at z =∞
the solutions U∞i converge if the conditions (41) are fulfilled, the Ū∞i diverge, but we cannot decide on the convergence
of the Ui. On the other side, the D’Alembert test implies that the two-sided solutions Ui converge for any finite value of
z, while U∞i and Ū∞i converge for |z| > |z0| (if i = 1, · · · , 4) or |z − z0| > |z0| (if i = 5, · · · , 8). However, the Raabe test
implies that U∞i and Ū∞i converge also at |z| = |z0| and |z − z0| = |z0| under the conditions (42) and (43).

The two-sided solutions of the first and second expressions, (Ui, U
∞
i , Ū∞i ) and (Ui,U

∞
i , Ū∞i ), depend on the parameters

µi and νi, respectively. If there is an arbitrary constant in the CHE, we can take µi = νi = 0 in order to obtain two non-
equivalent groups of one-sided series solutions with n ≥ 0. According to sections 3.2 and 3.3, these groups differ by the
convergence properties of their solutions. Besides this, we have seen that the solutions of the first group do not admit the
limit z0 → 0 which gives solutions to the double-confluent Heun equation, whereas some sets of the second group admit the
limit. In addition, notice that, under certain conditions, the one-sided solutions reduce to finite-series solutions for which
the ratio tests become meaningless.

The results reported in the previous paragraph show that in fact it is useful to deal with two equivalent expressions
for the two-sided series. In effect, it is possible to obtain the two groups of one-sided series out of only one of expressions,
(Ui, U

∞
i , Ū∞i ) or (Ui,U

∞
i , Ū∞i ), by truncating the selected two-sided series on the left-hand side (n ≥ 0) and on the

right-hand side (n ≤ 0) as indicated in (9). Nevertheless, in this event, to rewrite the series with n ≤ 0 in the usual form
(n ≥ 0) we are forced to perform mathematical manipulations as the ones of section 3.4.

In section 4 we have applied one-sided series expansions to solve a time-dependent two-level problem where the wave-
functions must vanish when the time t goes to infinity. We have found bounded solutions given by finite series if R = 2, 3, · · · ,
where R is a parameter of the problem. These solutions can also be obtained from power series solutions for the CHE.
In addition, for non-integer values of R we have found analytical infinite-series solutions in terms of irregular confluent
functions, convergent and bounded for all admissible values of the independent variable z = (1 + it)/2. These solutions can
be used as starting point for computing explicit solutions for the two-level system. However, solutions for a characteristic
equation and the generation of the series coefficients demand a lot of additional computations (see section 4.3).

A connected issue which also requires further study is the reduced CHE, namely,

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+ [B3 + q(z − z0)]U = 0, q 6= 0, (121)

where z0, Bi and q are constants. This equation comes from the CHE (1) by means of the limits [22, 23]

ω → 0, η →∞ such that 2ηω = −q. (122)

Both groups of one-sided solutions of the CHE lead to solutions for the reduced CHE. Therefore, we expect new one-
sided solutions for this equation, a fact that may become relevant since Eq. (121) describes several physical systems
[23, 24, 25, 26, 27, 28].

A Other two-sided series solutions

In this appendix we apply the transformations (16) on the first set (24) following the order indicated in (19). If µi = 0,
we obtain one-sided series solutions, as discussed in section 3.
Second set: iη + 1 + B2

2 + B1

z0
6= 0,−1, · · · in U2(z) and U∞2 (z).

[
U2(z)

U∞2 (z)

]
= eiωzz1+

B1
z0

∞∑
n=−∞

b(2)
n

 Φ̃
(
iη + 1 + B2

2 + B1

z0
, 2 + B1

z0
− n− µ2;−2iωz

)
Ψ
(
iη + 1 + B2

2 + B1

z0
, 2 + B1

z0
− n− µ2;−2iωz

)
 ,

Ū∞2 (z) = e−iωzz1+
B1
z0

∞∑
n=−∞

b̄
(2)
n Ψ

[
−n− µ2 − iη + 1− B2

2 , 2− n− µ2 + B1

z0
; 2iωz

]
,

(A.1)
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where in the recurrence relations (21) for b
(2)
n we have

α
(2)
n = −2iωz0(n+ µ2 + 1), γ

(2)
n = −

[
n+ µ2 + iη − 1 + B2

2

] [
n+ µ2 − 1 +B2 + B1

z0

]
,

β
(2)
n = [n+ µ2] [n+ µ2 − 1 +B2 + 2iωz0] + iωz0

[
B2 + B1

z0

]
+B3

and for b̄
(2)
n we have

ᾱ
(2)
n = −2iωz0[n+ µ2 + 1]

[
n+ µ2 + iη + B2

2

]
, β̄

(2)
n = β

(2)
n ,

γ̄
(2)
n = −

[
n+ µ2 − 1 +B2 + B1

z0

]
, b̄

(2)
n = (−1)nΓ[1− n− µ2 − iη − B2

2 ]b
(2)
n .

Third set: 2 + iη − B2

2 6= 0,−1, · · · in U3(z) and U∞3 (z).[
U3(z)

U∞3 (z)

]
= eiωzz1+

B1
z0 [z − z0]1−B2−B1

z0

∞∑
n=−∞

b(3)
n

 Φ̃
[
2 + iη − B2

2 , 2 + B1

z0
− n− µ3;−2iωz

]
Ψ
[
2 + iη − B2

2 , 2 + B1

z0
− n− µ3;−2iωz

]
 ,

Ū∞3 (z) = e−iωzz1+
B1
z0 [z − z0]1−B2−B1

z0

∞∑
n=−∞

b̄
(3)
n Ψ

[
−n− µ3 − iη + B1

z0
+ B2

2 , 2− n− µ3 + B1

z0
; 2iωz

]
,

(A.2)

where in the relations (21) for b
(3)
n we have

α
(3)
n = −2iωz0[n+ µ3 + 1], γ

(3)
n = −

[
n+ µ3 + iη − B1

z0
− B2

2

] [
n+ µ3 + 1−B2 − B1

z0

]
,

β
(3)
n = [n+ µ3]

[
n+ µ3 + 1−B2 − 2B1

z0
+ 2iωz0

]
+
[
iωz0 − 1− B1

z0

] [
2−B2 − B1

z0

]
+ 2−B2 +B3

and for b̄
(3)
n we have

ᾱ
(3)
n = −2iωz0[n+ µ3 + 1]

[
n+ 1 + µ3 + iη − B1

z0
− B2

2

]
, β̄

(3)
n = β

(3)
n ,

γ̄
(3)
n = −

[
n+ µ3 + 1−B2 − B1

z0

]
, b̄

(3)
n = (−1)nΓ

[
−n− µ3 − iη + B1

z0
+ B2

2

]
b
(3)
n .

Fourth set: 1 + iη − B2

2 −
B1

z0
6= 0,−1, · · · in U4(z) and U∞4 (z).

[
U4(z)

U∞4 (z)

]
= eiωz(z − z0)1−B2−B1

z0

∞∑
n=−∞

b(4)
n

 Φ̃
(

1 + iη − B2

2 −
B1

z0
,−B1

z0
− n− µ4;−2iωz

)
Ψ
(

1 + iη − B2

2 −
B1

z0
,−B1

z0
− n− µ4;−2iωz

)
 ,

Ū∞4 (z) = e−iωz(z − z0)1−B2−B1
z0

∞∑
n=−∞

b̄(4)
n Ψ

[
−n− µ4 − 1− iη + B2

2 ,−n− µ4 − B1

z0
; 2iωz

]
,

(A.3)

where, in the relations (21) for b
(4)
n and b̄

(4)
n , we have

α
(4)
n = −2iωz0(n+ µ4 + 1), γ

(4)
n = −

[
n+ µ4 + iη + 1− B2

2

] [
n+ µ4 + 1−B2 − B1

z0

]
,

β
(4)
n = [n+ µ4] [n+ µ4 + 3−B2 + 2iωz0)] + iωz0

[
2−B2 − B1

z0

]
+ 2−B2 +B3

and for b̄
(4)
n = (−1)nΓ

[
−n− µ4 − iη − 1 + B2

2

]
b
(3)
n we have

ᾱ
(4)
n = −2iωz0[n+ µ4 + 1]

[
n+ µ4 + 2 + iη − B2

2

]
, β̄

(4)
n = β

(4)
n ,

γ̄4
n = −

[
n+ µ4 + 1−B2 − B1

z0

]
, b̄

(4)
n = (−1)nΓ

[
−n− µ4 − iη − 1 + B2

2

]
b
(4)
n .

Fifth set: iη + B2

2 6= 0,−1, · · · in U5(z) and U∞5 (z).[
U5(z)

U∞5 (z)

]
= eiωz

∞∑
n=−∞

b(5)
n

 Φ̃
[
iη + B2

2 , B2 + B1

z0
− n− µ5; 2iω(z0 − z)

]
Ψ
[
iη + B2

2 , B2 + B1

z0
− n− µ5; 2iω(z0 − z)

]
 ,

Ū∞5 (z) = e−iωz
∞∑

n=−∞
b̄(5)
n Ψ

[
−n− µ5 − iη + B1

z0
+ B2

2 ,−n− µ5 +B2 + B1

z0
; 2iω(z − z0)

] (A.4)
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where, in the relations (21) for b
(5)
n and b̄

(5)
n ,

α
(5)
n = 2iωz0(n+ µ5 + 1), γ

(5)
n = −

[
n+ µ5 + iη−B1

z0
− B2

2

] [
n+ µ5 − 1− B1

z0

]
,

β
(5)
n = [n+ µ5]

[
n+ µ5 + 1− 2iωz0 −B2 − 2B1

z0

]
+ iωB1 + 2ηωz0 +B3 + B1

z0

[
B1

z0
+B2 − 1

]
and

ᾱ
(5)
n = 2iωz0[n+ µ5 + 1]

[
n+ µ5 + 1 + iη − B1

z0
− B2

2

]
, β̄

(5)
n = β

(5)
n ,

γ̄
(5)
n = −

[
n+ µ5 − 1− B1

z0

]
, b̄

(5)
n = (−1)nΓ

[
−n− µ4 − iη + B1

z0
+ B2

2

]
b
(4)
n .

Sixth set: iη + 1 + B2

2 + B1

z0
6= 0,−1, · · · in U6(z) and U∞6 (z),

[
U6(z)

U∞6 (z)

]
= eiωzz1+

B1
z0

∞∑
n=−∞

b(6)
n

 Φ̃
[
1 + iη + B1

z0
+ B2

2 , B2 + B1

z0
− n− µ6; 2iω(z0 − z)

]
Ψ
[
1 + iη + B1

z0
+ B2

2 , B2 + B1

z0
− n− µ6; 2iω(z0 − z)

]
 ,

Ū∞6 (z) = e−iωzz1+
B1
z0

∞∑
n=−∞

b̄
(6)
n Ψ

[
−n− µ6 − 1− iη + B2

2 , B2 + B1

z0
− n− µ6; 2iω(z − z0)

]
,

(A.5)

where, in the recurrence relations,

α
(6)
n = 2iωz0(n+ µ6 + 1), γ

(6)
n = −

[
n+ µ6 + iη+1− B2

2

] [
n+ µ6 + 1 + B1

z0

]
,

β
(6)
n = [n+ µ6] [n+ µ6 + 3− 2iωz0 −B2]− iωB1 + 2ηωz0 − 2iωz0 +B3 −B2 + 2

and

ᾱ
(6)
n = 2iωz0[n+ µ6 + 1]

[
n+ µ6 + 2 + iη − B2

2

]
, β̄6

n = β6
n,

γ̄
(6)
n = −

[
n+ µ6 + 1 + B1

z0

]
, b̄

(6)
n = (−1)nΓ

[
−n− µ4 − iη − 1 + B2

2

]
b
(6)
n .

Seventh set: 2 + iη − B2

2 6= 0,−1, · · · in U7(z) and U∞7 (z).

[
U7(z)

U∞7 (z)

]
= eiωzz1+

B1
z0 [z − z0]1−B2−B1

z0

∞∑
n=−∞

b(7)
n

 Φ̃
[
2 + iη − B2

2 , 2−n− µ7 −B2 − B1

z0
; 2iω(z0 − z)

]
Ψ
[
2 + iη − B2

2 , 2−n− µ7 −B2 − B1

z0
; 2iω(z0 − z)

]
 ,

Ū∞7 (z) = e−iωzz1+
B1
z0 [z − z0]1−B2−B1

z0

∞∑
n=−∞

b̄(7)
n Ψ

[
−n− iη − µ7 − B1

z0
− B2

2 , 2− n− µ7 −B2 − B1

z0
; 2iω(z − z0)

] (A.6)

where, in the relations for b
(7)
n and b̄

(7)
n , we have

α
(7)
n = 2iωz0(n+ µ7 + 1), γ

(7)
n = −

[
n+ µ7 + iη + B2

2 + B1

z0

] [
n+ µ7 + 1 + B1

z0

]
,

β
(7)
n = [n+ µ7]

[
n+ µ7 + 1 +B2 + 2B1

z0
− 2iωz0

]
+ 2ηωz0 − 2iωz0 +B2 +B3 + B1

z0

[
B2 + B1

z0
+ 1− iωz0

]
and

ᾱ
(7)
n = 2iωz0[n+ µ7 + 1]

[
n+ µ7 + 1 + iη + B1

z0
+ B2

2

]
, β̄

(7)
n = β

(7)
n ,

γ̄
(7)
n = −

[
n+ µ7 + 1 + B1

z0

]
, b̄

(7)
n = (−1)nΓ

[
−n− µ4 − iη − B1

z0
− B2

2

]
b
(7)
n .

Eighth set: iη + 1− B2

2 −
B1

z0
6= 0,−1, · · · in U8(z) and U∞8 (z).

[
U8(z)

U∞8 (z)

]
= eiωz[z − z0]1−B2−B1

z0

∞∑
n=−∞

b(8)
n

 Φ̃
[
iη + 1− B2

2 −
B1

z0
, 2−B2 − B1

z0
− n− µ8; 2iω(z0 − z)

]
Ψ
[
iη + 1− B2

2 −
B1

z0
, 2−B2 − B1

z0
− n− µ8; 2iω(z0 − z)

]
 ,

Ū∞8 (z) = e−iωz[z − z0]1−B2−B1
z0

∞∑
n=−∞

b̄
(8)
n Ψ

[
1− n− µ8 − iη − B2

2 , 2− n− µ8 −B2 − B1

z0
; 2iω(z − z0)

] (A.7)
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where, in the relations (21) for b
(8)
n and b̄

(8)
n , we have

α
(8)
n = 2iωz0(n+ µ8 + 1), γ

(8)
n = −

[
n+ µ8 − 1 + iη + B2

2

] [
n+ µ8 − 1− B1

z0

]
,

β
(8)
n = [n+ µ8] [n+ µ8 − 1 +B2 − 2iωz0] + iωB1 + 2ηωz0 +B3

and

ᾱ
(8)
n = 2iωz0[n+ µ8 + 1]

[
n+ µ8 + iη + B2

2

]
, β̄

(8)
n = β

(8)
n ,

γ̄
(8)
n = −

[
n+ µ8 − 1− B1

z0

]
, b̄

(8)
n = (−1)nΓ

[
−n− µ4 − iη + 1− B2

2

]
b
(8)
n .

B Some power series solutions (Baber-Hassé)

The Baber-Hassé’s power-series solution [29] have been adapted to the version (1) of the CHE by Leaver [2] who has
not considered the transformations (16). We denote the solutions by U0

i (z); they converge for any finite z provided we take
the minimal solutions for the series coefficients.

As initial solution, we take

U0
1 (z) = eiωz

∞∑
n=0

b̂(1)
n (z − z0)n,

where, in the three-term recurrence relations (79) for b̂
(1)
n ,

α̂
(1)
n = z0[n+ 1]

[
n+B2 + B1

z0

]
, β̂

(1)
n = n [n+B2 − 1 + 2iωz0] + iωz0

[
B2 + B1

z0

]
+B3,

γ̂
(1)
n = 2iω

[
n− 1 + iη + B2

2

]
. (B.1)

Using the transformations (16) as in (19) we get other solutions. The solutions U0
2 and U0

6 are used in section 4.2. We find

U0
2 (z) = T1U

0
1 (z) = eiωzz1+

B1
z0

∞∑
n=0

b̂(2)
n (z − z0)n, (B.2)

where the coefficients for the recurrence relations are

α̂
(2)
n = z0[n+ 1]

[
n+B2 + B1

z0

]
, γ̂

(2)
n = 2iω

[
n+ iη + B1

z0
+ B2

2

]
β̂

(2)
n = n

[
n+ 1 + 2iωz0 +B2 + 2B1

z0

]
+
[
1 + iωz0 + B1

z0

] [
B2 + B1

z0

]
+B3. (B.3)

For U0
6 ,

U0
6 (z) = T1U

0
5 (z) = T1T4U

0
1 (z) = eiωzz1+

B1
z0

∞∑
n=0

b̂(6)
n (−z)n, (B.4)

the coefficients for the recurrence relations are

α̂
(6)
n = z0[n+ 1]

[
n+ 2 + B1

z0

]
, γ̂

(6)
n = −2iω

[
n+ iη + B1

z0
+ B2

2

]
,

β̂
(6)
n = n

[
n+ 1− 2iωz0 +B2 + 2B1

z0

]
− iωz0

[
2 + 2iη + B1

z0

]
+
[
1 + B1

z0

] [
B2 + B1

z0

]
+B3.
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