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Abstract

We study the thermostatistics of a damped bi-modal particle, i.e., a particle of mass m

subject to a work reservoir that is analytically represented by the telegraph noise. Because of

the coloured nature of the noise, this system does not fit the Lévy-Itô class of stochastic processes

making of it an instance of a non-equilibrium system in contact with an external reservoir. We

obtain the statistics for the position and velocity, namely in the steady state, as well as the (time

dependent) statistics of the energy fluxes in the system considering no constraints on the noise

features. With that results we are able to give an account of the statistical features of the large

deviations of the injected and dissipated power that can change from sub-Gaussianity to super-

Gaussianity depending on the colour of the noise. By properly defining an effective temperature

for this system, T , we are capable of obtaining an equivalent entropy production/exchange rate

equal to the ratio between the dissipation of the medium, γ, and the mass the particle, a relation

that concurs with the case of a standard thermal reservoir at temperature, T = T .
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I. INTRODUCTION

The problem of Brownian diffusion as studied by Smoluchowski and Einstein or other

more generic cases that fit the Kramers Equation allow describing the probabilistic be-

haviour of a particle of mass m — which we dub focal particle — in a medium wherewith

it continuously exchanges heat. It is this endless energy exchange related to an unceasing

production of entropy that makes of this kind of systems a paradigmatic case of non-

equilibrium statistical mechanics. From these models, it is possible to establish relations

between dynamical features of the focal particle — e.g., typical square velocity and diffu-

sivity — with physical properties of the medium like its dissipation constant, temperature

and other physical constraints the particle is subject to, like the form of a confining or

interacting potential for example [1].

From the perspective of a description in the space of physical observables (position

and velocity), problems related to Brownian motion are based on the Langevin equation,

which assumes that in a infinitesimal interval of time the focal particle suffers a large

number of collisions with the particles of the medium. Furthermore, those collisions relax

instantaneously and act upon the particle independently one another. Under this set of

assumptions, the outcome is a Gaussian stochastic force.

Nowadays, it is well known that non-equilibrium situations corresponding to the

Langevin equation with standard Gaussian terms (either white or coloured) represent a

small stake of the problems that surround us [2–7]. For instance, we just need to consider

a little dense medium for which the impacts of the focal particle occur at relevant rates,

e.g., the order of the (inverse of the) relaxation scale of the system. Other cases include

molecular motors [5, 8, 9] or colloidal systems [10]. In not being described by Gaussian

noise, the cumulants of order greater or equal than three do not vanish, which means that

a probabilistic treatment of the problem based on solving an associated Fokker-Planck

(or Kramers) equation is, at best, an approximation.

These non-Gaussian noise features pose interesting questions regarding its impact on

the thermostatistical behaviour of the system. Explicitly, according to the Lévy-Itô the-

orem on the decomposition of the measure, any white noise can be written as the super-

position of continuous measure Brownian motion (Gaussian noise) and singular measure

Poissonian motion (shot-noise) [11]. Recently, it was proved that shot-noise systems can
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have radically different transport properties, namely when the system has got non-linear

elements [12–15].

Nevertheless, there are still many situations that do not fit the superposition of white

noises; that is the case of the telegraph noise (also known as dichotomous or 2-state

Brownian noise) which can assume two values that randomly alternate between them at

given specific rates [16–18] and whose treatment in probability space is not compatible

with the Fokker-Planck Equation. Besides the evident theoretical interest that a different

type of noise prompts, the telegraph noise is appropriate to a quantitative description

of nanomechanical problems like intracellular bidirectional transport on cytoskeletal fila-

ments mediated by two sets of molecular motors — namely the Kinesin-1 and cytoplasmic

Dinein — that pull the load in opposite directions similar to a random tug-of-war [21]

or the kinetics of protein markers in capillary media, e.g., the dynamics of calcium ions

in blood plasma [22] as well as manometric ratchets [23]. Additionally, the telegraph

noise fits the description of transport properties in amorphous materials [24], chromatog-

raphy [25], quantum effects [26–28] among other systems and phenomena.

Owing to its analytical complexity, the problem of dichotomous noise has been treated

considering simplifications, namely overdamping and equal transition rates between states

as well as symmetrical values for the states [29–31]. However, even for such conditions

the achievement a utterly exact and closed solution to the probability density functions

is strict. That said, the main focus of this problem has been the computation of the

probability currents, which are a proxy for the average velocities, the moments of the

velocity and correlations, always considering an overdamped limit with symmetric noise.

The present paper aims to treat the generic model of a particle subject to a telegraph

noise without considering any of the restrictions aforementioned. Besides the statistical

characterisation of position and velocity, we introduce a thermostatistical survey of the

system, namely on the fluxes of heat and work that can be related to large deviation func-

tions of power and to entropy production and exchange by the system. The intermingle

of time independent and time dependent results permits to establish a proper definition

of (effective) temperature of this actually athermal system.
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II. THE MODEL

The evolution of the position, x, and velocity, v, of our focal particle with mass, m, is

defined by the set of equations,
mdv(t)

dt
= −γ v (t)− k x (t)− ζt

v (t) = dx(t)
dt

, (1)

representing the fact that it is constrained by a harmonic potential (k x2/2) and subject to

dissipation (with constant γ) and a stochastic force, ζ, describing the interaction between

the particle and the (work) reservoir. From a physical point of view, the potential can

mimic the action of an optical tweezer that has a behaviour very close to harmonicity

[19].

Analytically, the telegraph noise corresponds to a stochastic process, {ζt} that assumes

two values, ζ = {a, b}. In time, one either has ζ = a or ζ = b according to the transition

rates,

• µ, from b to a;

• µ̄ = ρ µ, from a to b.

These conditions allow writing a Master Equation (see A) that yields a stationary

distribution,

fss (ζ) = p δa,ζ + p̄ δb,ζ , (2)

with,

p ≡ µ

µ+ µ̄
=

µ

µ (1 + ρ)
=

µ

µ ρ̂
= ρ̂−1, p̄ ≡ 1− p =

ρ̂− 1

ρ̂
. (3)

At this point, we address the reader to A for further details on the statistics of the noise.

In the stationary state the correlation function,

⟨⟨ζ (t1) ζ (t2)⟩⟩ ≡ ⟨ζ (t1) ζ (t2)⟩ − ⟨ζ (t1)⟩ ⟨ζ (t2)⟩ , (4)

reads,

⟨⟨ζ (t1) ζ (t2)⟩⟩ = ∆2 P e−α |t1−t2|, (5)
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where,

∆ ≡ a− b, α ≡ µ (1 + ρ) = µ ρ̂ P ≡ p p̄. (6)

From Eq. (5), we verify that the telegraph noise is not white; hence, the Lévy-Itô theorem

on the composition of the measure does not apply and the problem of a bi-modal particle

fits into a different category. Moreover, since the fluctuations induced by ζ in the system

are coloured and the dissipation only depends on the value of the velocity at time t (and

not its past values), the fluctuations and the dissipation do not have the same origin and

thus the reservoir is is classified as external, i.e., it does not abide by the fluctuation-

dissipation relation [32]. As a matter of fact, taking into consideration the two state

properties of the noise we can deem a dichotomous athermal reservoir as a work reservoir

since it performs work by pulling and pushing the focal particle for random periods of

time.

Looking at Eq. (1), we identify the following time scales: a time scale imposed by the

medium,

τr ≡
m

γ
, (7)

that is associated with the existence of dissipation leading to a stationary solution in the

velocity and a time scale related to the confining potential,

τs ≡
√

m

k
, (8)

that will be associated with oscillatory terms. In addition, there are time scales relate to

the noise; a scale defined by the colour of the noise,

τ ≡ α−1, (9)

and the typical time the noise has a value ζ = a (b) ,

τa ≡ µ̄−1, τb ≡ µ−1.

The formulation in the space of observables provided by Eq. (1) bridges with a de-

scription of the process in the space of the probabilities. Imposing, f (x, v, t0 | x0, v0, t0) =

δ (x− x0) δ (v − v0) as the initial condition, the evolution of the probability density func-



CBPF-NF-013/15 6

tion is given by,
∂
∂t
f ′ (x, v, a, t) =

[
− ∂

∂x
v + ∂

∂v
γ v+k x−a

m

]
f ′ (x, v, a, t) + µ f ′ (x, v, b, t)− µ̄ f ′ (x, v, a, t)

∂
∂t
f ′ (x, v, b, t) =

[
− ∂

∂x
v + ∂

∂v
γ v+k x−b

m

]
f ′ (x, v, b, t) + µ̄ f ′ (x, v, a, t)− µ f ′ (x, v, b, t)

,

(10)

with,

f (x, v, t) =
∑
ζ

f ′ (x, v, ζ, t) . (11)

The visual inspection of Eq. (10) give us an indication about the intricate character of the

solution to this problem and explains the simplifications introduced in previous works.

For this reason we scrapped solving Eqs. (10) and (11) and opted to directly treat Eq. (1)

resorting to Laplace-Fourier transforms.

A. Method of solution

Let us define the Laplace-Fourier transform as,

Õ (i q + ε) ≡ lim
ε→0

∫
O (t) e−(i q+ε) t dt. (12)

After Fourier-Laplace transforming, Eq. (1) becomes,
m (i q + ε) ṽ (i q + ε) = −γ ṽ (i q + ε)− k x̃ (i q + ε) + ζ̃ (i q + ε)

ṽ (t) = (i q + ε) x̃ (i q + ε)

. (13)

Plugging the second line in the first one, we eliminate the velocity and we have for the

position in reciprocal space,

x̃ (i q + ε) =
ζ̃ (i q + ε)

R (i q + ε)
. (14)

The function R (s) is,

R (s) = m (s− κ+) (s− κ−) , (15)

with zeros located at,

κ± = −θ

2
± i Ω

(16)

= −θ

2
± i

√
4ω2 − θ2,
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where,

θ = τ−1
r =

γ

m
, ω2 = τ−2

o =
k

m
. (17)

Because the thermostatistical behaviour of the system is ruled by the position, velocity

or (stochastic) force, we consider a generic quantity, O (t), that in reciprocal space is recast

as,

Õ (i q1 + ε) = h (i q1 + ε) x̃ (i q1 + ε) . (18)

Accordingly, we have: for the velocity hv (s) = s, for the position hx (s) = 1 and for the

noise hζ (s) = R (s).

As we already mentioned, this system reaches a stationary state and under this cir-

cumstance the ergodic property,

⟨O⟩=O ≡ lim
Ξ→∞

1

Ξ

∫
O (t) dt. (19)

relating averages over samples, ⟨O⟩, and averages over time, O, holds. We can connect

the computation with the Laplace-Fourier transform by means of the final value theorem

[20],

O = lim
Ξ→∞

1

Ξ

∫
O (t) dt = lim

z→0
z

∫
e−z t O (t) dt. (20)

Using Eq. (12) in Eq. (20) as well as the equality between time and sample averaging

in the stationary state we get,

⟨O⟩ = lim
z→0, ε→0

z

∫
dq

2π

∫
dt e−z t+(i q+ε) t ⟨O (i q + ε)⟩

(21)

⟨O⟩ = lim
z→0, ε→0

∫
dq

2π

z

z − (i q + ε)
⟨O (i q + ε)⟩ .

If we are interested in obtaining time dependent statistics, we can continue using the

Laplace-Fourier representation but without applying the final value theorem,

⟨O (t)⟩ = lim
ε→0

∫
dq

2π
e(i q+ε) t ⟨O (i q + ε)⟩ . (22)

For the n-th order moment, the respective equation is straightforward from Eqs. (18) and

(21),

⟨On⟩ = lim
z→0, ε→0

∫
z

z −
∑n

l=1 (i ql + ε)

h (i q1 + ε) . . . h (i qn + ε)

R (i q1 + ε) . . . R (i qn + ε)
(23)

×
⟨
ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)

⟩ dq1
2π

. . .
dqn
2π

.
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The multiple integration in q1, . . . , qn eliminates all the modes related to the transient.

Analytically, this means that only combinations of poles that lead to a final expression

proportional to z/z yield an a priori non-vanishing solution. Only terms proportional to[∑ℓ
l=1 (i ql + ε)

]−1

are in agreement with that condition. As clear from R (q), those terms

arise from the moments of the noise
⟨
ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)

⟩
. In Fig. 1, we introduce

the typical structure of the poles related to Eqs. (21) and (23). When the reservoir is

- + 2 iq j e

i( )e - z -

Im ( )q

Re ( )q

i( )e - z+

i( )e + z -
i( )e + z+

i( )e + a

i( )e - a q
j

FIG. 1. Location of the poles of Eq. (23) in the complex plane. The poles in the lower-arch

will only be relevant in time dependent calculations.

Gaussian, the computation of
⟨
ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)

⟩
is quite simplified because it is

possible to apply the Isserlis-Wick theorem. However, the distribution of the dichotomous

reservoir is bimodal; that theorem does not apply and
⟨
ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)

⟩
has to

be computed without further simplifications besides time ordering. This generally ends

up giving quite long expressions. Nevertheless, we can grasp that,

⟨
ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)

⟩
∝

n∏
i=1

[
i∑

j=1

(i qj + ε)

]−1 n−1∏
l=1

[
l∑

j=1

(i qj + ε) + α

]−1

. (24)

where the first product contains the terms that give rise to non-vanishing calculations of

the long term moments. We must emphasise that this method can be employed to both

long term and time dependent statistics as we will demonstrate for the heat fluxes. In that

case, the poles of the first product lead to the emergence of the explicit time dependencies

whereas the second product will lead to damped oscillatory terms.



CBPF-NF-013/15 9

III. RESULTS FOR THE LONG-TERM MOMENTS OF THE VELOCITY AND

POSITION

In this section, we intensively use Eq. (23) for O = v and O = x that imply

h (i qj + ε) = (i qj + ε) and h (i qj + ε) = 1, respectively.

For the averages, n = 1, we have,

⟨v⟩ = 0, (25)

and,

⟨x⟩ = a p+ b p̄

k
. (26)

The value ⟨v⟩ = 0 is a necessary condition for the existence of a global stationary state,

for ⟨v⟩ ̸= 0 would lead to a time dependent average value of the position. Equation (25) is

independent of the values assumed for the states of the noise {a, b} and its weights {p, p̄}

as well. In other words, during the transient, the system displaces from x (t = 0) = 0 to

fluctuate around the average position Eq. (26), which is not a minimum of the potential.

As we shall see this means that there is an energy cost to maintain that steady state.

For the variances, ⟨⟨O2⟩⟩ = ⟨O2⟩ − ⟨O⟩2, we have,

⟨⟨
v2
⟩⟩

=
⟨
v2
⟩
=

∆2 P α

γ k̂
, (27)

where,

k̂ ≡ k + α (γ +mα) . (28)

The second cumulant of the position reads,

⟨⟨
x2
⟩⟩

=
∆2 P γ̂

γk k̂
, (29)

with,

γ̂ ≡ γ +mα. (30)

The value of ⟨v2⟩ plays a relevant role in non-equilibrium problems since it is related

to the canonical (local) temperature of the system. Because the telegraph noise is the
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stochastic process characterising our dichotomous reservoir, we christen the canonical

temperature of a bimodal particle the Marconi temperature which reads,

⟨K⟩ ≡ 1

2
m

⟨
v2
⟩
=

1

2
T ,

(31)

T =
∆2 P (γ̂ − γ)

γ k̂
.

Using T , we recast the form of ⟨⟨x2⟩⟩ into,

⟨⟨
x2
⟩⟩

=
γ̂

k (γ̂ − γ)
T , (32)

that is different from the value obtained for a particle subject to a harmonic potential

and in contact with a thermal reservoir with temperature T = T , ⟨⟨x2⟩⟩ = T k−1, which

is its white-noise asymptotic limit.1 The convergence of ⟨⟨v2⟩⟩ and ⟨⟨x2⟩⟩ to the steady

state is exhibited in Fig. 2.

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

t

YY
v

2
]]

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

t

YY
x

2
]]

FIG. 2. Time evolution of
⟨⟨
v2
⟩⟩

(left panel) and
⟨⟨
x2

⟩⟩
(right panel). The full line corresponds

to numerical results obtained com averages over 106 samples with: m = k = α = γ = 1,

a = −b = 1 and µ = µ̄ = 1/2. The dashed line represents the stationary state limit
⟨⟨
v2
⟩⟩

= 1/3

and
⟨⟨
x2

⟩⟩
= 2/3.

The definition of T is also important for understanding the statistics of the system

as we change the rate µ, namely when it approaches the white-noise limit, µ → ∞

1 Bear in mind that the white-noise limit of the telegraph noise is not the Gaussian though.
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(i.e., α−1 → 0). If the temperature is kept constant as we change µ, the gap between

amplitudes, ∆, should go as,

|∆| = T
1
2

√
γ ρ̂ [k + ρ̂ µ (γ +m ρ̂µ)]

mµρ
(33)

∼ T
1
2µ1/2.

Let us now look at higher-order cumulants that are equal to zero for Gaussian distribu-

tions, namely the third and the fourth which are crucial for characterising the distribution.

The third order cumulant is defined as,

⟨⟨
O3

⟩⟩
=

⟨
O3

⟩
− 3

⟨⟨
O2

⟩⟩
⟨O⟩ − ⟨O⟩3 . (34)

The calculations from Eq. (23) yield,2

⟨⟨
v3
⟩⟩

= 2
∆3α2 p [1 + p (2 p− 3)] [3 km− 2γ γ̂]

γ̂ k̂ (2γ2 + km) [4 k + α (γ + γ̂)]
. (35)

for the velocity whereas for the position,

⟨⟨
x3
⟩⟩

= 2
∆3 P (2p− 1) [km (5 γ̂ − 3γ) + 2 γ̂2 (γ + γ̂)]

k γ̂ k̂ (km+ 2γ2) [4 k + α (γ̂ + γ)]
. (36)

The convergence to the values of ⟨⟨v3⟩⟩ and ⟨⟨x3⟩⟩ is plotted in Fig. 3.

From Eqs. (35) and (36) we compute the skewness,

AO ≡ ⟨⟨O3⟩⟩
⟨⟨O2⟩⟩3/2

.

Explicitly, we have for the velocity,

Av =
2 γ (2p− 1) [3 km− 2 γ γ̂]

γ̂ (2γ2 + km) [4k + α (γ + γ̂)]

√
α γ3 k̂

P
, (37)

and for the position,

Ax = 2
(2 p− 1) [km (5 γ̂ − 3γ) + 2 γ̂2 (γ̂ + γ)]

k γ̂ k̂ (km+ 2γ2 ) [4 k + α (γ̂ + γ)]

√
α γ3k k̂

P γ̂5
. (38)

2 For the sake of simplicity we assume ∆ > 0.
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FIG. 3. Time evolution of
⟨⟨
v3
⟩⟩

(left panel) and
⟨⟨
x3

⟩⟩
(right panel). The full line corresponds

to numerical results obtained com averages over 106 samples with: m = k = α = γ = 1,

a = −b = 1, µ = 2/3, µ̄ = 1/3. The dashed line represents the stationary state limit
⟨⟨
v3
⟩⟩

=

−16/1701 = 9.4 × 10−3 and
⟨⟨
x3

⟩⟩
= −479/1701 = −0.2915 . . . .

Equation (37) allows learning that, for a fixed value of p, the skewness depends on the

relation between the mechanical parameters and the colour of the noise. Explicitly, turning

our attention to the behaviour of Av as a function of the probability p, the skewness of

the velocity would concur with the skewness of the telegraph noise: right-skewed when

p > 1/2 and left-skewed when p < 1/2. However, the sign of Av changes with the sign of

[3 km− 2 γ γ̂] as well. We explore this fact from different perspectives by finding critical

values, e.g., for α at which Av changes sign,

α∗ = max

[
3 k

2 γ
− γ

m
, 0

]
. (39)

For α > α∗, the skewness is opposite to that given by p and the same otherwise. This

critical behaviour can be expressed for the mechanical parameters as well,

k∗ = max

[
2 γ (γ +mα)

3m
, 0

]
or γ∗ = max

[√
m (6 k +mα2)−mα

2
, 0

]
. (40)

In that case, for k < k∗ or γ > γ∗, the sign of Av is contrary to the behaviour established

by p. In order to provide some reasoning on this fact we center our attention on the

dissipation taking place in the system. If the telegraph noise has uneven exchange rates

(ρ ̸= 1), we make one state of the noise to outweigh the other. If the system is due

to achieve a stationary state, the prevalence of one of the states of the stochastic force
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must be set off by the conservative force (created by the harmonic potential) — that is a

function of the position and whose skewness is always the same as ζ — and the dissipative

force. That said, depending on the limits established in Eqs. (39) and (40), it might be

necessary to have an asymmetry that is complemmentary to the skweness of the noise.

Because of the conservative nature of elastic force that effect must come from dissipation,

which implies the change of the sign of Av. In Fig. 4, we present the behaviour of the

skewness for different values of α.

0.0 0.2 0.4 0.6 0.8 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

p

A

FIG. 4. Asymmetry of f (v) v probability p. For all the cases m = k = γ = 1, a = −b = 1. The

green full line is forα = 1, the purple dashed line is for α = 1/4, and the magenta dotdashed

line corresponds to α = α∗ = 1/2 for which the asymmetry of the distribution changes sign in

accordance with Eq. (39).

According to the theorem of the characteristic function by Marcinkiewicz [33], a prob-

ability density function either has two non-vanishing cumulants (and it is a Gaussian)

or it must have an infinite set of non-vanishing cumulants3. Making no assumptions on

the gap, ∆, and the ratio between jump rates, ρ, we make µ going to infinity, so that ζ

approaches white noise. Fixing the Marconi temperature, we plug Eq. (33) into Eq. (35)

to get, ⟨⟨
v3
⟩⟩

∼ T
3
2
µ5/2

µ3
→ 0 (µ → ∞) . (41)

Although the expressions for the other cumulants get more and more intricate, it is not

difficult to understand that ⟨⟨vn⟩⟩ ∼ µ
2−n
2 and the same for ⟨⟨xn⟩⟩ for n ≥ 3. This

3 Although for symmetric distributions all the odd cumulants zero out, one always have
⟨⟨
O2n

⟩⟩
̸= 0

(n ∈ N) for non-Gaussian distributions.



CBPF-NF-013/15 14

guarantees that the distributions f (x) and f (v) converge to the Gaussian as depicted in

Fig. 6.

To conclude the statistical analysis of v and x, we have inspected the non-Gaussian

nature of the respective distributions. This is best done using the kurtosis

C ≡ ⟨⟨O4⟩⟩
⟨⟨O2⟩⟩2

, (42)

instead of the fourth order cumulant. The results are the following: for the velocity,

Cv = 3
k̂ [18mk3F1 + 2 k2F2 + α γ̂ kF2 + 3α2γ2 γ̂2(γ̂ + γ)F2]

γ̂ P α (3γ2 + 4km) [4k + α(γ̂ + γ)] [km+ γ̂(γ̂ + γ)] [9k + α(γ̂ + 2 γ)]
− 3 (43)

and for the position,

Cx = 6
k γ (G1 + k γ̂ G2 + 3k3m2 G3 + k2mG4)

P γ̂3
(
3k + k̂

)
(3γ2 + 4km) [9k + α (γ̂ + 2γ)]

[
δ2γ + 3γδγ + 2γ2 + km

] , (44)

where the functions F and G are made explicit in B.

The kurtosis of the position is always negative, i.e., the distribution is platykurtic

(sub-Gaussian). Contrarily, the kurtosis of the velocity is positive (leptokurtic) for small

values of α and for large values it goes to zero from below. This means that looking in the

Cv − p plane (α is a parameter), there is a critical value of the colour, α†, for which the

distribution p (v) is mesokurtic for p† = p‡ = 1/2 but non-Gaussian though, as Fig. 6 let

us understand. From there on, the distribution of velocities has two leptokurtic regions

for p < p† e p > p‡ = p† + 1/2 and is platykurtic elsewhere.

For large values of α, the form of the distributions f (x) and f (v) can be understood as

follows: when the exchange rates µ and µ̄ are very large but smaller than the relaxation

rate γ/m, we can solve the dynamical equation for the time spell equal to m/γ assuming a

fixed value for ζ. Therefore, the solution to the equation of motion with initial conditions

x (t = 0) = 0 and v (t = 0) = 0, reads,

x (t) = −ζ

k
+ exp

[
− t

2 τr

]{
ζ

k
cos [2Ω t] +

γ ζ

k
√

4 km− γ2
sin [2Ω t]

}
. (45)

In this scenario, the system tends to dwell closer to −a/k and −b/k. This explains the

peaks in Fig. 6 (left panel) around x = ±1 which are more pronounced, the larger the

difference between τr and the scales µ−1 and µ̄−1. The same difference in the scales
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explains the strong peak around v = 0 (right panel). Regarding the U-shape between

the peaks in the left panel they are the outcome of the (damping) oscillatory terms. It is

worth remembering that the probability density function of a trigonometric variable, O,

is,

f (O) =
1

π
√
1−O2

. (46)

As the two scales concur, the distribution approaches a bell-shape to match the Gaussian

in the white-noise limit. The steady state solution for the overdamped case and specific

noise features can be found in [30, 31].
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FIG. 5. Time evolution of
⟨⟨
v4
⟩⟩

(left panel) and
⟨⟨
x4

⟩⟩
(right panel). The full line corresponds

to results obtained by numerical simulation averaged over 106 samples with: m = k = α = γ = 1,

a = −b = 1 e µ = µ̄ = 1/2. The dashed line represents the asymptotic stationary state value⟨⟨
v4
⟩⟩

= −16/273 = −0.0586 . . . (left panel) and
⟨⟨
v4
⟩⟩

= −166/273 = −0.608 . . . .

IV. ENERGETIC CONSIDERATIONS

Looking at the dynamical equations, the change in the energy of the particle is the

outcome of the superposition of the the dissipative force,

Fdis (t) = −γ v (t) , (47)

which performs negative work, and the stochastic force that is the sole responsible for

injecting energy into the system,

Finj (t) = ζ (t) . (48)
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FIG. 6. Stationary distribution f (v) v v (left panel) and stationary distribution f (x)

v x (right panel) obtained by numerical simulation. For all cases, T = 1/3, m = k =

γ = 1, p = p̄ = 1/2 e b = −a. The legend goes as follows: {α = 1,a = 1} (green);{
α = α† = 0.5438 . . . , a = 1.06188 . . .

}
(red) and

{
α = 100, a =

√
3367/100

}
(black). The yel-

low line represents a Gaussian with variance equal to 1/3 (left panel) and 2/3 (right panel), that

corresponds to the asymptotic limits of p (v) and p (x) when α approaches infinity.
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FIG. 7. Kurtosis of the velocity v p with m = k = γ = 1 e b = −a = 1. The green line

corresponds to α = 1, the dotdashed red line is for α = α† = 0.5438 . . . and the dashed blue

line α = 45/100.

Putting it mathematically, the total energy change, i.e., variation of kinetic energy, K,

plus the variation of potential energy, V , between initial time t0 = 0 and some instant
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FIG. 8. Kurtosis of the the position (left panel) and velocity (right panel) as a function of α

and p m = k = γ = 1 e b = −a = 1.

t = Ξ is given by,

E (Ξ) ≡ K (Ξ) + V (Ξ) =

∫ Ξ

0

[−γ v (t)] v (t) dt+

∫ Ξ

0

ζ (t) v (t) dt

(49)

= Jdis (Ξ) + Jinj (Ξ) .

where we define J as the energy fluxes, which are stochastic processes as well. In the

present work, we are only interested in their long term behaviour so that Ξ is much larger

than both m/γ and α−1. At that stage, the energy injected by the (work) reservoir must

be set off by the dissipation the flux of which corresponds to heat. As a matter of fact, all

the absolute values of the statistical moments/cumulants of the fluxes Jinj (Ξ) and Jdis (Ξ)

will match.

Resorting to our Fourier-Laplace method the moments of each flux are obtained from,⟨
Jn
inj (Ξ)

⟩
=

n∏
l=1

∫ Ξ

0

dtl

∫
dq2l−1

2π

dq2l
2π

e[(i q2l−1+i q2l+2 ε)tl]
(i q2l + ε)

R (i q2l + ε)
(50)

×

⟨
n∏

l=1

ζ̃ (i q2l−1 + ε) ζ̃ (i q2l + ε)

⟩
,

and,

⟨Jn
dis (Ξ)⟩ =

n∏
l=1

(−γ)

∫ Ξ

0

dtl

∫
dq2l−1

2π

dq2l
2π

e[(i q2l−1+i q2l+2 ε)tl]
(i q2l−1 + ε)

R (i q2l−1 + ε)

(i q2l + ε)

R (i q2l + ε)

×

⟨
n∏

l=1

ζ̃ (i q2l−1 + ε) ζ̃ (i q2l + ε)

⟩
. (51)

Once again, the result depends on the moment
⟨∏n

l=1 ζ̃ (i q2l−1 + ε) ζ̃ (i q2l + ε)
⟩
, but

for the injected flux the noise factors ζ̃ have different origins. In other words, for
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FIG. 9. Probability density function of Jinj (Ξ) e J|dis| (Ξ) obtained by numerical simulation

with m = k = α = γ = 1, a = −b = 1, µ = µ̄ = 1/2 e Ξ = 1000. It is visible that the two

distributions match. We have shifted of 1/2 in the dissipated flux is made to balance out the

constant terms (linked to the transient) that do not appear in the calculation of Jdis.

⟨∏n
l=1 ζ̃ (i q2l−1 + ε) ζ̃ (i q2l + ε)

⟩
inj
, there are (2n)! possible arrangements; however, we

can only benefit from the indistinguishability between pairs of terms and thus the total

number of equal terms amounts to n!. On the other hand, for the dissipative flux, the de-

generacy is equal to 2nn! because the noises ζ̃ (i q2l−1 + ε) and ζ̃ (i q2l + ε) can be swapped

without changing the result.

We define the long term cumulants as,

⟨⟨J n (Ξ)⟩⟩ ≡ Ξ lim
t→∞

1

t
⟨⟨Jn (t)⟩⟩ (52)

= Ξ r⟨⟨J n(Ξ)⟩⟩,

and r⟨⟨J n(Ξ)⟩⟩ the respective growth rate.

Using Eq. (50) and (51), we have for the full average fluxes,

⟨Jinj (Ξ)⟩ =
γT
m

Ξ +

[
∆2 P

k̂
(k − α δγ) +

(a p+ b p̄)2

k

]
(53)

=
γT
m

Ξ + Einj,

and,
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⟨Jdis (Ξ)⟩ = −γT
m

Ξ +

{
∆2P

γ k̂2

[
k (2 γ̂ − γ) + α

(
2 γ̂2 − 2γ2 + γ γ̂

)]
− (a p+ b p̄)2

2 k

}
(54)

= −γT
m

Ξ + Edis.

Therefrom, we identify,

⟨Jinj (Ξ)⟩ = |⟨Jdis (Ξ)⟩| =
γT
m

Ξ. (55)

Moreover, adding the time independent terms we find,

Einj + Edis =
m

2

∆2 P α

k̂
+

∆2 P γ̂

2 γ k̂
+

(a p+ b p̄)2

2 k

(56)

=
1

2
m

⟨
v2
⟩
+

1

2
k
⟨⟨
x2
⟩⟩

+
1

2
k ⟨x⟩2 ,

whence we identify the kinetic energy of the stationary state in the first term whereas

the second and third terms correspond to the potential energy. The third term is only

non-vanishing if the noise is not balanced (a p ̸= − b p̄) and emerges from the fact that

in such conditions the average position is different from the minimum of the potential for

which there is an energy cost. In Fig. 10 (left panel), we plot the time evolution of the

average fluxes with time Ξ. For large Ξ, the difference between the lines (the sum of the

fluxes) remains constant and corresponds to the total energy of the particle. It is worth

referring that this case differs from the thermal reservoir system since the (average) total

energy does not totally emerge from the dissipative term.

Since the results are equivalent, we will use the dissipation flux to compute the variance

because it has a larger degeneracy. For the second order moment we have 3 different terms,

each one with a degeneracy number equal to 16. Subtracting ⟨Jdis (Ξ)⟩2 to ⟨J2
dis (Ξ)⟩ we

have the second order cumulant,⟨⟨
J 2 (Ξ)

⟩⟩
=

P α [a4H11 + 2 a b (a2H12 + b2H13) + a2b2 (H14 +H15) + b4 H16]

4 k k̂3
Ξ (57)

+
a4pH21 + 4 a b P α (a2H22 + b2H23) + 2a2b2 P (H24 + α2H25) + b4p̄H26

k γ γ̂ k̂ [4k + α(γ̂ + γ)]
Ξ

+
a4pH31 + 4 a b P α (a2H32 + b2H33) + 2a2b2 P (H34 + α2H35) + b4p̄H36

k α γ k̂
(
γ2 − δ2γ + 4 km

) Ξ,
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FIG. 10. Time evolution of the average fluxes ⟨Jinj (Ξ)⟩ (full line) and |⟨Jdis (Ξ)⟩| (dotdashed

line) obtained by numerical simulation of 106 samples with m = k = α = γ = 1, a = −b = 1,

µ = µ̄ = 1/2. The dotted line represents the asymptotic growth given by Eq. (55), ⟨J (Ξ)⟩ =

Ξ/3.
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FIG. 11. Time Evolution of the variance of the fluxes
⟨⟨

J2
inj (Ξ)

⟩⟩
(full line) and

⟨⟨
J2
dis (Ξ)

⟩⟩
(dotdashed line) obtained by numerical simulation of 106 samples with m = k = α = γ = 1,

a = −b = 1, µ = µ̄ = 1/2. The dotted line has got a slope equal to 8/36 = 0.2 (2) as given by

Eq. (57).

with the functions Hij as defined in the appendix.

In Fig. 11, we show the comparison between results from numerical simulation and

Eq. (57).

As our calculations demonstrate, the higher the order of the cumulant ⟨⟨J n (Ξ)⟩⟩, the
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FIG. 12. Cumulants of the fluxes, ⟨⟨J n (Ξ)⟩⟩, as a function of the colour of the telegraph noise

obtained by numerical simulation with m = k = γ = 1, a = −b = 1 and Marconi temeprature

1/3. The legend goes as follows: full grey line - average; dotted black line - variance; blue dashed

line - 3th order cumulant; dotdashed green line the 4th order cumulant. The ⟨⟨J n (Ξ)⟩⟩ has

a minimum located at α ≃ 1.05. For α ≃ 1.5 the distribution changes its kurtosis going from

platykurtic to a leptokurtic.

more intricate the analytical expressions get. Using our method these expression can be

precisely obtained; however due to their extension they are ever harder to understand

regarding its physical content. To circumvent this snag we carried out numerical sim-

ulations to compute the slopes of each cumulant ⟨⟨J n (Ξ)⟩⟩ with n = {3, 4}. These

results allow enhancing an approximative approach based on the Edgeworth expansion

to the probability distribution of J , L (J ), that can be seen as a large deviation of the

injected/dissipated power. The evolution of the first four cumulants of the flux with α

(for a fixed Marconi temperature) is presented in Fig. 12. For those numerical simulation

results, we found out that the cumulant rates are very well described by,

r⟨⟨J 3(Ξ)⟩⟩ =
1

50

[
27.78 + 1.78

(
2.03

α

)1.89

− 22.14

(
2.03

α

)0.4
]
,

(58)

r⟨⟨J 4(Ξ)⟩⟩ =
1

50

[
−17.04 + 14.05α− 1.54α2 + 0.098α3 − 0.0027α4

]
.

The curves in Fig. 12 show that the rate of the second order cumulant rapidly ap-

proaches its white-noise asymptotic limit. The skewness is always positive, but it has a

minimum for α ≃ 1.05 before going to white-noise limit. On the other hand, the Gaus-
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sianity of the distribution changes its nature with the rate α; explicitly, for α < α∗ ≃ 1.41,

L (J ) is platykurtic and leptokurtic otherwise. Heed that although for α = α∗ the large

deviation function L (J ) is mesokurtic it is still non-Gaussian. In other words, the white-

noise limit of the large deviation function L (J ) is not a Gaussian similarly to the thermal

case. In latter case we have,

L (J ) ∼ exp

[
−
(
J − γ T

m
Ξ
)2

4T J

]
. (59)

V. FINAL REMARKS

In this manuscript, we carried out a thermostatistical study of a linear mechanical

system with mass m subject to confinement, dissipation and a stochastic dichotomous

force that we understood as the action of an athermal external (work) reservoir; external

for the fluctuations and the dissipation do not have the same origin and therefore the

fluctuation-dissipation relation is not verified. That description fits important nanome-

chanical phenomena like intracellular bidirectional transport on cytoskeletal filaments

mediated by two sets of molecular motors, the kinetics of protein markers in capillary

media among other types of problems. Because of its coloured nature, the telegraph noise

used to represent the dichotomous force lies in a different class of stochastic processes

other than the Lévy-Itô. In the latter, every white-noise stochastic process can be repre-

sented by a superposition of continuous (Brownian) and singular (Poissonian) measures.

This means that Fokker-Planck methods are unfit for an accurate analysis of such systems

as previous studies had proven. Treating the problem in Fourier-Laplace space, we were

able to develop a statistical description of the position and velocity imposing no condition

on the damping nature as well as symmetry properties of the noise, contrarily to the state

of the art.

Regarding a stationary state analysis, we found that the position always presents the

same qualitative properties as the telegraph noise regarding the skewness and the kurtosis.

Differently, depending on the set of mechanical parameters of the system, the skewness

of f (v) can be opposed to that of the noise. This change in the skewness can be compre-

hended as follows: when the noise is unbalanced, a p ̸= b p̄, there must be some emerging

feature of the system that compensates the prevalence of one of the sides of the noise;
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taking into account that the confining force is conservative — and the sign of the skewness

of the distribution f (x) does not depend on the mechanical features of the system — the

balance can only come from dissipation that is ruled by the velocity which then assumes

an opposite skewness to the noise. With respect to the kurtosis the distribution f (v) is

leptokurtic for small values of α, i.e., large waiting time between changes in the value of

the noise, whereas f (x) is always platykurtic.

From the second order moment of the velocity, we defined an effective temperature of

the system (the Marconi temperature), which plays the role of typical scale of energy of a

bi-modal particle. Nonetheless, due to the coloured nature of the noise, the equipartition

of the energy does not hold and thus V = k x2/2 ̸= T/2. That equality is only observed

in the white-noise limit.

Afterwards, since in our analytical procedure we can skip making the propagator ex-

plicit, we were able to determine the statistics of time dependent quantities as well, namely

the total energy fluxes (dissipated and injected), J , that correspond to the large devia-

tion of the respective powers. Analysing the behaviour of the respective large deviation

function, L (J ), we found that its variance converges fast to the asymptotic white-noise

value. Moreover, the function L (J ) can have different types of non-Gaussianity, i.e.,

it is platykurtic for small jump rates of the noise and gets leptokurtic as the jump rate

between states soars.

Last, despite of the fact that we are treating an athermal problem, we recall the

existence of an effective temperature for this system and we look at the entropy production

that ought to be related to the dissipated and injected fluxes. If the system attains a

steady state, then the condition between the total entropy, S, the entropy production, Π,

and entropy exchange, Ψ, is,

dS

dt
= Π−Ψ = 0 (t ≫ m/γ) . (60)

Bearing in mind our results we bridge Π with Jinj and Ψ with Jdis. Accordingly, from

dimensional analysis, the energy flux up to some time t is the product of [entropy] by

[temperature]. If we assume that the effective temperature of the bi-modal particle is the

Marconi temperature, then we can easily verify that Π = Ψ = γ/m, exactly the same form

obtained for linear systems in contact with reservoirs which fit the Lévy-Itô conditions.

Therefore, the Marconi temperature is the energy scale that retrieves a universal form of
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long-term entropy production/exchange.

The present analysis can be further expanded along different lines. In a purely ther-

mostatistical perspective, we can consider a memory kernel for the dissipative term (with

same spectrum as the noise α) so that the dichotomous work reservoir noise is analogue to

a thermal internal reservoir as described by Kubo and Mori [34]. In this case, we expect

to be capable of establishing an athermal fluctuation-dissipation relation and analyse the

large deviations of the energy fluxes as well as fluctuation relations for work and entropy.

In recent work of one of us it was shown the relevance of non-linearities in the confining

potential when the reservoir is athermal (white-shot-noise), namely in the activation of

higher-order cumulants that will act as sources of energy of higher order [12]; accordingly,

it would be interesting to assess the impact of non-linearities (either in the confining po-

tential or the dissipation) along the lines of the current manuscript and the points we

have discussed. These studies can be made considering single or multiple particle systems

in contact with different reservoirs.

As the present work evinces, the concept of temperature can be interpreted in a broader

sense than that Thermodynamics imposes. On that account, several thermostatistical

concepts can be recast taking into consideration the idiosyncrasies of the system. This

works for both physical problems like superconducting systems where the uncertainty in

the location of the vortices can be read as an effective temperature [35] and non-physical

problems like a financial market for which the volatility also fits a temperature concept,

which recently led the analysis of price dynamics to a internal reservoir approach [36].

Notwithstanding, especially at very short time scales, trading is more similar to a tug-

of-war between buyers and sellers than a particle in a medium. In other words, for

a high-frequency dynamics, one verifies that the price soars and drops very closely to

a telegraph noise process. For little liquid markets, this feature jointly with periods

without activity is even clearer. Therefore an appropriate analytical description would be

a scenario consistent with a three-state noise for which we can perform a similar analysis.
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Appendix A: The telegraph noise

The telegraph noise, also known as dichotomous or 2-state Brownian noise, corresponds

to a stochastic process {ζt} that assumes two values ζ = {a, b}. In time, the noise switches

from once state to the other according to pre-established (average) rates:

• µ when going from b to a;

• µ̄ = ρ µ otherwise,

which yields the following master equation,
∂ f(a,t | ζ0,t0)

∂ t
= µ f (b, t | ζ0, t0)− µ̄ f (a, t | ζ0, t0)

∂ f(b,t | ζ0,t0)
∂ t

= µ̄ f (a, t | ζ0, t0)− µ f (b, t | ζ0, t0)

, (A1)

where f (a, t | ζ0, t0) + f (b, t | ζ0, t0) = 1. Assuming always the same initial condition,

f (ζ, t0 | ζ0, t0) = δζ,ζ0 . (A2)

the solution to Eq. (A1) reads,
f (a, t | ζ0, t0) = p+ exp [−α (t− t0)] (p̄ δa,ζ0 − p δb,ζ0)

f (b, t | ζ0, t0) = p̄− p̄ exp [−α (t− t0)] (p̄ δa,ζ0 − p δb,ζ0)

. (A3)

For long enough time intervals, i.e., t− t0 ≫ α−1, the stationary distribution reads,

fest (ζ) = p δa,ζ + p̄ δb,ζ . (A4)

From Eq. (A3) one determines the evolution of the noise between to instants t and t′,

f (a, t | a, t′) = p+ p̄ e−α(t−t′), f (a, t | b, t′) = p− p e−α(t−t′),

f (b, t | a, t′) = p̄− p̄ e−α(t−t′), f (b, t | b, t′) = p̄+ p e−α(t−t′).

(A5)
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Still from the master equation it is possible to determine the moments of n-th order

of telegraph noise,

⟨ζ (t1) . . . ζ (tn)⟩ =
∑

ζ(t1) ,... ,ζ(tn)
(t1>...>tn)

[ζ (t1) . . . ζ (tn)] p (ζ (t1) , . . . , ζ (tn))

(A6)

=
∑

ζ(t1) ,... ,ζ(tn)

[ζ (t1) . . . ζ (tn)] p [ζ (t1) |ζ (t2)] . . . p [ζ (tn−1) |ζ (tn)] p [ζ (tn)] .

Notice that when computing the general expressions for the moments of n-th order we

must include all time orderings.

Regarding the second order cumulant,

⟨ζ (t1) ζ (t2)⟩c = ⟨ζ (t1) ζ (t2)⟩ − ⟨ζ (t1)⟩ ⟨ζ (t2)⟩

(A7)

= ∆2
[
P e−α |t1−t2| − p̄2 e−α (t1+t2)

]
−∆ ⟨ζ⟩ p̄

(
e−α t1 + e−α t2

)
.

In the long time limit,

⟨ζ (t1) ζ (t2)⟩c = ∆2 P e−α |t1−t2| (A8)

= BD e−α |t1−t2|,

where,

A = a p+ b p̄, B = (a− b) p, D = (a− b) p̄. (A9)

It is worth recalling that maintaining the amplitudes of both states, i.e., keeping ∆ con-

stant, and increasing the frequency of the noise (α → ∞), the correlation ⟨ζ (t1) ζ (t2)⟩c
would vanish, which does not correspond to the coloured gaussian noise case.

1. Numerical implementation of the noise

In order to assess our analytical results and carry out further numerical analysis (for

which analytical analysis are quite complex and physically dim). In that case two options

occur:
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I.: Looking to Eq. (A3) and assuming a given initial condition, x0, one analyses the

probability that the noise has a value x at time t, comparing f (x, t |x0, t0) with a

random number, r, uniformly distributed between 0 and 1. If f (x, t |x0, t0) > r

the noise gets the value x. This check is made a some (fixed) time interval ∆t that

should be adjusted according to the smallest scale the parameters impose.

II.: Another method is based on the first passage process and corresponds to the numer-

ical method we employed. In that case, the master Equation is solved taking into

account an extra condition,
f (b, t | a, t0) = 0 ⇐ x0 = a

f (a, t | b, t0) = 0 ⇐ x0 = b

. (A10)

The respective solution implies that the probability the noise changes from a to b

after an interval of time δt = t− t0 is equal to,

Qa→b (δt) = µ̄ exp [−µ̄ δt] , (A11)

and the probability the noise switches from b to a after δt = t− t0,

Qb→a (δt) = µ exp [−µ δt] . (A12)

If the noise is equal to a (b) at instant t0, we pick a number, δt, exponentially

distributed with characteristic scale µ̄−1 (µ−1); the noise keeps its value a (b) and at

instant t0 + δt = t it assumes a new value b (a). Then, for computational effects t

turns into the new initial time and a new waiting time δt is computed and so forth.

: In our case, we assume ξ (t0) = a.

Appendix B: Explicit forms of the functions F , G, and H

In these functions we have the following simplified expressions,

δγ ≡ γ̂ − γ, δp ≡ p̄− p.
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1. Functions for Eq. (43)

F1 = γ2 + 3γδγ + 8P δ2γ,

F2 = 18 γ4 + 47 γ3 δγ + 63 (1− P ) γ2 δ2γ

+3 (10− 7P ) γ δ3γ + 26Pδ4γ,

(B1)

F3 = 24γ4 + 2 (7− 57P ) γ3 δγ + (65P + 6) γ2 δ2γ

+2 (3− P ) γ δ3γ + 4P δ4γ,

F4 = (2− 6P ) γ + Pδγ.

2. Functions for Eq. (44)

G1 = 3 (5P + 1) α γ̂4(γ̂ + γ)2(γ̂ + 2γ),

G2 = (170P + 33) δ5γ + 10 (110P + 21) γ δ4γ + (2411P + 445) γ2δ3γ

+7 (329P + 58) γ3δ2γ + 6 (181P + 31) γ4δγ + 36 (6P + 1) γ5,

(B2)

G3 = 3 (8P + 3) δ2γ + (144P + 35) γδγ + 8 (6P + 1) γ2,

G4 = 19 (17P + 3) δ4γ + 3 (599P + 105) γδ3γ + (2866P + 481) γ2δ2γ

+(1740P + 277) γ3δγ + 66 (6P + 1) γ4.
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3. Functions for Eq. (57)

H11 = k k̂ p̄2 + k̂2p2 + Pk (k − δγα) ;

H12 = Pα
[
α γ̂2 + k (5 γ̂ + 2 γ)

]
− k k̂ p̄2 −

(
k̂ p

)2

;

H13 = (2P − 1) k2 + α k
[
P (5 γ̂ + 2 γ)− γ̂

(
2 p̄2 − p2

)]
+ p̄ γ̂2 α2δp;

H14 = k̂2
(
p̄2 + p2

)
− 2P k α γ̂;

H15 = k2δ2p + k α [(1− 16P ) δγ + (1− 12P ) γ]− 4P γ2 α2;

H16 = k̂2p̄2 + k k̂ p2 + P k (k − δγ α) ;

H21 = 4 (γ̂ p+ γ p̄) k3 + pk2α
[(
4p2 + 5

)
δ2γ + (8p+ 1) γδγ + 10γ2

]
+k γ̂ α2

[
p
(
5p2 + 1

)
δ2γ + 8p2γ2 + 2mαγ

(
6p2 − 4P

)]
+ p3α3γ3 (γ̂ + γ) ;

H31 = 4k3 (γ̂p− γδp) +
[
p
(
9p2 + 10P − 3 p̄2

)
k2δ2γα + 2

(
4p3 + 9pP + 8 p̄ P + p̄3

)
γδ2γ

+ γ2
(
10 p̄2 − p2 + 5P

)]
+ k α2 γ̂

[
p
(
6p2 + 2P − p̄2

)
δ2γ + γ

(
4p3 + 8pP + 9 p̄ P − 2 p̄3

)
δγ

+2γ2
(
5p̄3 − p3 − pP + 4p̄P

)]
+ α3 δ2γ

[(
γ2 + 2 γ γ̂

)
p3 + 2γ̂ γ p P + 4γ2p̄3

]
;

H22 = p2α2γ̂3 (γ̂ + γ) + k α γ̂
[
5p2δ2γ + 4pγ2 + 2 (5p− 1) γδγ

]
+k2

[
4p2δ2γ + 2γ2 + (4p+ 1) γδγ

]
;

H32 = k2
[
δpγ

2 − 4Pδγγ + 4 (1 + P ) δ2γ
]
+ k α γ̂

[
p (2 + 3p) δ2γ

+
(
p2 − 3 p̄2

)
γ2 +

(
2p2 − 2P + 3p̄2

)
γ δγ

]
+ (γ α)2 (γ̂ p− γ) (γ̂ p− 2γδp) ;
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H23 = p̄2α2γ̂3 (γ̂ + γ) + k α γ̂
[
4p̄γ2 + 2 (4p̄− p) δγγ + 5p̄2δ2γ

]
+k2

[
2γ2 + (4p̄+ 1) γδγ + 4 (p̄ δγ)

2] ;
H33 = k2

[
(1 + 4P ) γδγ + 4 (1 + p) p̄ δ2γ − δpγ

2
]

+k α γ̂
[
p̄ (2 + 3p) δ2γ + γ2

(
p̄2 − 3p2

)
+ γδγ

(
3p2 − 2P + 2 p̄2

)]
+(γ̂ α)2 (γp̄− γ) (2γδp + γp̄)

H24 = Pα2γ̂ (γ̂ + γ) + k α γ̂
[
(5P + 1) δ2γ + 5γ δγ + 2 γ2

]
+ 4k3m

+k2
[
(4P + 1) δ2γ + 9γδγ + 2γ2

]
;

H34 = 4k3γ̂ − k2α
(
9γ2 − 4Pγδγ + 4Pδ2γ

)
+P k α2 γ̂

(
2δ2γ + 7δγγ − 2γ2

)
+ pα2γ̂3 (γ̂ − 4γ) ;

H25 = 2P α γ̂3 (γ̂ + γ) + k γ̂
(
10P δ2γ + 5γ δγ + 2γ2

)
+ 2 k2m (γ + 4P δγ) ;

H35 = α γ̂3 [2γ̂P + γ (1− 8P )]+k γ̂
[
6P δ2γ − (1− 14P ) γ δγ +

(
δ2p γ

)]
−2 k2m

(
γ δ2p + 4P δγ

)
;

H26 = 4 k3 (γ̂ p̄+ γ p) + p̄ α k2
[(
4 p̄2 + 1

)
δ2γ + 10 γ2 + (8 p̄+ 1) γ δγ

]
+k γ̂ α2

[
p̄
(
5 p̄2 + 1

)
δ2γ + 2

(
p2 − 2P + 7p̄2

)
γ δγ + 8 (p̄ γ)2

]
+ (p̄ α γ̂)3 (γ̂ + γ̂) ;

H36 = 4 (γ δp + γ̂ p̄) k3 +
[
p̄
(
9 p̄2 − 3 p2 + 10P

)
k2 α δ2γ

+ 2
(
p3 + 8pP + 9 p̄P + 4 p̄3

)
γ δγ +

(
10 p2 + 5P − p̄2

)
γ2
]

+
[
p̄
(
6 p̄2 − p2 + 2P

)
k α2 γ̂ δ2γ +

(
4 p̄3 − 2p3 + 9pP + 8 p̄ P

)
γ δγ

− 2
(
5p3 + 4pP − p̄P − p̄3

)
γ2
]

+γ̂2α3
[
δ2γ p̄3 + 2 p̄ P δγ γ + γ2

(
4p3 − 2 p̄ P − p̄3

)]
.
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