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Abstract

Using the worldline SU(2|1) superfield approach, we construct N = 4 superconformally
invariant actions for the d = 1 multiplets (1,4,3) and (2,4,2). The SU(2|1) super-
field framework automatically implies the trigonometric realization of the superconformal
symmetry and the harmonic oscillator term in the corresponding component actions. We
deal with the general N = 4 superconformal algebra D(2, 1;α) and its central-extended
α = 0 and α = −1 psu(1, 1|2)⊕ su(2) descendants. We capitalize on the observation that
D(2, 1;α) at α 6= 0 can be treated as a closure of its two su(2|1) subalgebras, one of which
defines the superisometry of the SU(2|1) superspace, while the other is related to the first
one through the reflection of µ, the parameter of contraction to the flat N = 4, d = 1
superspace. This closure property and its α = 0 analog suggest a simple criterion for
the SU(2|1) invariant actions to be superconformal: they should be even functions of µ.
We find that the superconformal actions of the multiplet (2,4,2) exist only at α = −1, 0
and are reduced to a sum of the free sigma-model type action and the conformal super-
potential yielding, respectively, the oscillator potential ∼ µ2 and the standard conformal
inverse-square potential in the bosonic sector. The sigma-model action in this case can
be constructed only on account of non-zero central charge in the superalgebra su(1, 1|2).
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1 Introduction

Recently, there was an essential progress in constructing and understanding the rigid super-
symmetric theories in curved superspace which attract attention in connection with the general
“gauge/gravity” correspondence (see, e.g., [1, 2, 3] and references therein). In [4, 5], two of
us elaborated on the simplest d = 1 analogs of such theories, the SU(2|1) supersymmetric
quantum mechanics (SQM) models, proceeding from the SU(2|1) covariant worldline super-
field approach. Two types of the worldline SU(2|1) superspace as the proper supercosets of
the supergroup SU(2|1) were constructed. Both superspaces are deformations of the standard
N = 4, d = 1 superspace (see [6] and references therein) by a mass parameter m. The off- and
on-shell deformed versions of the N = 4, d = 1 multiplets (1, 4, 3) and (2, 4, 2) were studied
and proved to possess a number of interesting peculiarities as compared with their “flat” m = 0
cousins. One of such new features is the necessary presence of the harmonic oscillator terms
∼ m2 in the bosonic sectors of the corresponding invariant Lagrangians. The “weak supersym-
metry” model of ref. [7] and the “super Kähler oscillator” models of refs. [8, 9] were recovered
as the particular cases of generic SU(2|1) SQM associated, respectively, with the single mul-
tiplet (1, 4, 3) and a few multiplets (2, 4, 2). It is interesting to inspect the superconformal
subclass of the SU(2|1) SQM models. This is the main subject of the present paper.

As was argued in [10], conformal mechanics [11] can be divided into three classes character-
ized by the parabolic, trigonometric and hyperbolic realizations of the d = 1 conformal group
SO(2, 1) ∼ SL(2,R). Earlier, supersymmetric extensions of conformal mechanics correspond-
ing only to the parabolic transformations were mainly studied [12, 13, 6]. Motivated by [10], the
classification of superconformal N = 4 SQM models was recently extended by the trigonomet-
ric/hyperbolic type [14]. The basic difference of the trigonometric/hyperbolic superconformal
actions from the parabolic ones is the presence of oscillator potentials. The standard d = 1
Poincaré supercharges present in the superconformal algebras are not squared to the canonical
Hamiltonian in such models. The actions of trigonometric/hyperbolic superconformal mechan-
ics cannot be obtained from the standard N = 4, d = 1 superfield approach, while the parabolic
actions are well described just within the latter1. It turns out that it is the SU(2|1) superfield
approach that is ideally suited for the comprehensive description of the trigonometric N = 4
superconformal actions. The hyperbolic actions can be obtained from the trigonometric ones
by a simple substitution.

Our construction is based on the appropriate two-parameter embedding of the superspace
supergroup SU(2|1) into the most general N = 4, d = 1 superconformal group D (2, 1;α), with
the contraction parameter m being redefined as m → −αµ and µ also appearing in the basic
anticommutator on its own. At any α 6= 0 the whole conformal superalgebra D (2, 1;α) can be
obtained as a closure of the original superalgebra su(2|1) and its −µ counterpart, which suggests
a simple selection rule for the superconformal SU(2|1) SQM Lagrangians as those depending
only on µ2. At α = 0, the basic su(2|1) contracts into some flat N = 4, d = 1 superalgebra
which is still different from the standard N = 4, d = 1 “Poincaré” superalgebra and involves the
parameter µ in such a way that D (2, 1;α=0) ∼ psu(1, 1|2)⊕ su(2) (and its central extension)
can be obtained as a closure of this flat superalgebra and its −µ counterpart as subalgebras
of D (2, 1;α=0). This important property makes it possible to sort out the superconformal
actions in the special α = 0 case too. Exploiting the closure property just mentioned, we find

1The possibility of adding an oscillator term to the DFF action [11] without breaking conformal symmetry
was firstly noticed in [15]. The N = 2 superconformal extensions of such actions were considered in [16, 17].
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the universal two-parameter family of the realizations of the conformal supergroup D (2, 1;α)
on the coordinates of the SU(2|1) superspace, as well as on the superfields representing the
off-shell multiplets (1, 4, 3) and (2, 4, 2), at all admissible values of the parameter α (for the
second multiplet, only α = −1 and α = 0 are allowed). These realizations automatically
prove to be trigonometric while the corresponding superconformal actions necessarily involve
the oscillator-type terms ∼ µ2. The parabolic realizations of D (2, 1;α) and the corresponding
actions are recovered in the limit µ = 0, in which both su(2|1) and its α = 0 analog go over
into the standard µ-independent N = 4, d = 1 Poincaré superalgebra.

The paper is organized as follows. The salient features of the SU(2|1) superspace approach
are sketched in Section 2. In Section 3, the embedding of su(2|1) in D (2, 1;α) is discussed
along the lines outlined above and the relevant SU(2|1) superspace realizations of D (2, 1;α)
are explicitly presented. The study of the trigonometric models of superconformal mechanics
associated with the multiplets (1, 4, 3) and (2, 4, 2) is the subject of Sections 4 - 7. We con-
struct the superfield and component off- and on-shell actions for various cases, distinguishing
those which admit additional conformal inverse-square potentials in the bosonic sector. The
alternative (albeit equivalent) construction of the component superconformally invariant ac-
tions, based on the D-module representation techniques, is briefly outlined in Section 8 on the
example of the multiplet (2, 4, 2). Section 9 is a summary of the basic results of the paper.
In Appendices, we collect some details concerning the central extensions of the superalgebra
D (2, 1;α) with α = −1 (or α = 0), the generalized chiral SU(2|1) multiplets (2, 4, 2), as well
as the hyperbolic superconformal mechanics.

2 SU(2|1) superspace
First of all, we need to define the superalgebra su(2|1). Its standard form is given by the
following non-vanishing (anti)commutators:

{Qi, Q̄j} = 2mI ij + 2δijH̃,
[

I ij, I
k
l

]

= δkj I
i
l − δilI

k
j ,

[

I ij, Q̄l

]

=
1

2
δijQ̄l − δilQ̄j ,

[

I ij, Q
k
]

= δkjQ
i − 1

2
δijQ

k,
[

H̃, Q̄l

]

=
m

2
Q̄l ,

[

H̃, Qk
]

= −m
2
Qk. (2.1)

The generators satisfy the following rules of the Hermitian conjugation:

(

Qk
)†

= Q̄k ,
(

Q̄k

)†
= Qk,

(

Iki
)†

= I ik , H̃† = H̃. (2.2)

The generators I ij are the SU(2) symmetry generators, while the mass-dimension generator H̃
corresponds to U(1) symmetry. The superalgebra (2.1) can be regarded as a deformation of the
flat N = 4, d = 1 “Poincaré” superalgebra by a real mass parameter m. In the limit m = 0,
H̃ becomes the Hamiltonian (alias the time-translation generator) and the generators I ij define
the outer SU(2) automorphisms.

One can extend (2.1) by an external U(1) automorphism symmetry (R-symmetry) generator
F which has non-zero commutation relations only with the supercharges [1]:

[

F, Q̄l

]

= −1

2
Q̄l ,

[

F,Qk
]

=
1

2
Qk, (F )† = F. (2.3)
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After redefining H̃ ≡ H −mF , the extended superalgebra su(2|1)⊕ u(1)ext acquires the form
of a centrally extended superalgebra ŝu(2|1):

{Qi, Q̄j} = 2mI ij + 2δij(H − 2mF ),
[

I ij , I
k
l

]

= δkj I
i
l − δilI

k
j ,

[

I ij , Q̄l

]

=
1

2
δijQ̄l − δilQ̄j ,

[

I ij, Q
k
]

= δkjQ
i − 1

2
δijQ

k,

[

F, Q̄l

]

= −1

2
Q̄l ,

[

F,Qk
]

=
1

2
Qk. (2.4)

All other (anti)commutators are vanishing. The generatorH is the relevant central charge. This
extended superalgebra is also a deformation of the N = 4, d = 1 Poincaré superalgebra. In the
limit m = 0, H becomes the Hamiltonian and I ij, F turn into the outer U(2) automorphism
generators.

In the present paper, we start from the framework of the SU(2|1) superspace constructed
in [4]. The SU(2|1), d = 1 superspace is identified with the following coset of the extended
superalgebra (2.4):

SU(2|1)⋊ U(1)ext
SU(2)× U(1)int

∼ {Qi, Q̄j, H, F, I
i
j}

{I ij, F}
. (2.5)

It is convenient to deal with the superspace coordinates ζ := {t, θi, θ̄k} as in [4, 5]. They are
related to those in the exponential parametrization of the supercoset (2.5) as

g = exp

{(

1− 2m

3
θ̄kθk

)

(

θiQ
i + θ̄jQ̄j

)

}

exp {itH}, (θi) = θ̄i. (2.6)

The extended supergroup ŜU(2|1) acts as left shifts of the supercoset element (2.6). The
corresponding supercharges are realized as

Qi =
∂

∂θi
− 2m θ̄iθ̄k

∂

∂θ̄k
+ iθ̄i∂t −m θ̄iF̃ +m θ̄k

(

1−m θ̄kθk
)

Ĩ ik ,

Q̄j =
∂

∂θ̄j
+ 2mθjθk

∂

∂θk
+ iθj∂t −mθjF̃ +mθk

(

1−m θ̄kθk
)

Ĩkj , (2.7)

and the bosonic generators as

I ij =

(

θ̄i
∂

∂θ̄j
− θj

∂

∂θi

)

− 1

2
δij

(

θ̄k
∂

∂θ̄k
− θk

∂

∂θk

)

,

H = i∂t , F =
1

2

(

θ̄k
∂

∂θ̄k
− θk

∂

∂θk

)

. (2.8)

Here, Ĩkj and F̃ are matrix generators of the U(2) representation by which the given super-
field is rotated with respect to its external indices. According to (2.7), the supersymmetric
transformations ǫi , ǭ

i = (ǫi) of the superspace coordinates are given by

δθi = ǫi + 2m ǭkθkθi , δθ̄i = ǭi − 2mǫkθ̄
kθ̄i , δt = i

(

ǭkθk + ǫkθ̄
k
)

. (2.9)

The SU(2|1) invariant integration measure is defined as

dζ = dt d2θ d2θ̄
(

1 + 2m θ̄kθk
)

, δdζ = 0 . (2.10)
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The covariant derivatives Di, D̄j, D(t) are defined by the expressions2

Di =

[

1 +m θ̄kθk −
3m2

8
(θ)2

(

θ̄
)2
]

∂

∂θi
−m θ̄iθj

∂

∂θj
− iθ̄i∂t

+m θ̄iF̃ −m θ̄j
(

1−m θ̄kθk
)

Ĩ ij ,

D̄j = −
[

1 +m θ̄kθk −
3m2

8
(θ)2

(

θ̄
)2
]

∂

∂θ̄j
+m θ̄kθj

∂

∂θ̄k
+ iθj∂t

−mθjF̃ +mθk
(

1−m θ̄kθk
)

Ĩkj ,

D(t) = ∂t (2.11)

and satisfy, together with Ĩkj , F̃ , the superalgebra which mimics (2.4). Under the left ŜU(2|1)
shifts of the coset element (2.5) the spinor covariant derivatives undergo the induced SU(2)
transformations in their doublet indices and an induced F transformation with respect to which
Di and D̄i possess opposite charges. In the limitm = 0 , the formulas of the standard flatN = 4,
d = 1 superspace are recovered. The superfields given on the SU(2|1) superspace (2.5) can have
external SU(2) indices and U(1) charges on which the proper matrix realizations of the relevant
generators act.

There exists an alternative definition of the SU(2|1) superspace, in which the time coordi-
nate is associated as a coset parameter with the total internal U(1) generator H̃ = H −mF ,
while F is still placed into the stability subgroup [5]. As was already mentioned, in the basis
(H̃, F ) the generator F is split from other generators, becoming the purely external U(1) auto-
morphism. The relevant supercoset is schematically related to (2.5) just by replacing H → H̃ :

SU(2|1)⋊ U(1)ext
SU(2)× U(1)ext

∼ {Qi, Q̄j, H̃, F, I
i
j}

{I ij , F}
∼ {Qi, Q̄j, H̃, I

i
j}

{I ij}
. (2.12)

The same replacement H → H̃ should be made in the coset element (2.5), giving rise to the
coset element g̃. Due to the relation H̃ = H −mF , these two coset elements are related as

g̃ = g exp{−imtF}. (2.13)

Under the left shifts by the fermionic generators the coordinates ζ = {t, θi, θ̄k} are transformed
according to the same formulas (2.9), so they can also be treated as the parameters of the
new supercoset. The difference from the first type of the SU(2|1) superspace is the absence of
independent constant shift of the time coordinate, which can still be realized under the choice
(2.5). The left H̃ shift gives rise to a shift of t accompanied by the proper U(1) rotation of the
Grassmann coordinates. The corresponding covariant spinor derivatives differ from (2.11) by
the absence of the part ∼ F̃ and by some overall phase factor ensuring them to transform only
under induced SU(2) transformations. These modifications can be easily established from the
precise relation (2.13). The corresponding superfields can carry only external SU(2) indices.

2For Grassmann coordinates and variables we use the following conventions: (χ)
2
= χiχ

i , (χ̄ )
2
= χ̄iχ̄i .

CBPF-NF-013/14
5



3 Embedding of su(2|1) into D (2, 1;α)

The most general d = 1, N = 4 superconformal algebra is D (2, 1;α) [6, 18]. It is spanned by
8 fermionic and 9 bosonic generators with the following non-vanishing (anti)commutators:

{Qαii′ , Qβjj′} = 2
[

ǫijǫi′j′Tαβ + α ǫαβǫi′j′Jij − (1+α) ǫαβǫijLi′j′

]

, (3.1)

[Tαβ, Qγii′ ] = −i ǫγ(αQβ)ii′ , [Tαβ , Tγδ] = i (ǫαγTβδ + ǫβδTαγ) ,

[Jij, Qαki′] = −i ǫk(iQαj)i′ , [Jij , Jkl] = i (ǫikJjl + ǫjlJik) ,

[Li′j′, Qαik′ ] = −i ǫk′(i′Qαij′) , [Li′j′, Lk′l′] = i (ǫi′k′Lj′l′ + ǫj′l′Li′k′) . (3.2)

The bosonic subalgebra is su(2) ⊕ su′(2) ⊕ so(2, 1) with the generators Jik, Li′k′ and Tαβ ,
respectively. Switching α as α ↔ −(1 + α) amounts to switching SU(2) generators as Jik ↔
Li′k′

3. The Hermitian conjugation rules are:

(Qαii′)
† = ǫijǫi

′j′Qαjj′ , (Tαβ)
† = Tαβ , (Jij)

† = ǫikǫjlJkl , (Li′j′)
† = ǫi

′k′ǫj
′l′Lk′l′ . (3.3)

The N = 4, d = 1 Poincaré superalgebra can be defined as the following subalgebra of
D (2, 1;α):

{Q1ii′ , Q1jj′} = 2ǫijǫi′j′Ĥ, (3.4)

where Ĥ is one of the generators of the conformal algebra so(2, 1) represented in (3.1) and (3.2)
by the generators Tαβ . The standard conformal so(2, 1) generators are identified as

Ĥ := T11 , K̂ := T22 , D̂ := T12 , (3.5)
[

D̂, Ĥ
]

= −iĤ,
[

D̂, K̂
]

= iK̂,
[

Ĥ, K̂
]

= 2iD̂. (3.6)

In the degenerate case α = −1 one may retain all eight fermionic generators Qαii′ and only
six bosonic generators Tαβ , Jij forming together the superalgebra psu(1, 1|2) without central
charge. The second SU(2) generators Li′j′ drop out from the basic anticommutation relation
(3.1). Yet, they can be treated as the generators of some extra SU ′(2) automorphisms. Taking
α = 0, one can suppress, in the same way, the generators Jij in (3.1), ending up with SU ′(2) as
the internal group and the first SU(2) as the external automorphism group. Thus in the cases
α = −1 and α = 0 the supergroup D (2, 1;α) is reduced to a semi-direct product:

α = −1, 0, D (2, 1;α) ∼= PSU(1, 1|2)⋊ SU(2)ext, (3.7)

with SU(2)ext being generated, respectively, by Li′,j′ or Jij. Note that in these exceptional
cases one can extend the psu(1, 1|2) superalgebra by the proper SU(2)ext triplets of central
charges [13]. If these central charges are constant, the triplet can be reduced to one central
charge, which enlarges psu(1, 1|2) to su(1, 1|2) and simultaneously breaks SU(2)ext to U(1)ext
(see Appendix A).

We will be interested in the most general embedding of the superalgebra su(2|1) into
D (2, 1;α). To this end, we pass to the new basis in D (2, 1;α) through the following linear

3More generally, the equivalent superalgebras are related through the substitutions α → −(1 + α), α−1 .
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relations:

εikQ1k1′ =: −1

2

(

Si +Qi
)

, Q1j2′ =: −1

2

(

S̄j + Q̄j

)

,

εikQ2k1′ =:
i

µ

(

Qi − Si
)

, Q2j2′ =: − i

µ

(

Q̄j − S̄j

)

,

T22 =:
2

µ2

[

H− 1

2

(

T + T̄
)

]

, T11 =:
1

2

[

H +
1

2

(

T + T̄
)

]

,

T12 = T21 =:
i

2µ

(

T − T̄
)

, µ 6= 0 ,

L1′1′ =: −iC, L2′2′ =: iC̄, L1′2′ = L2′1′ =: −iF, J i
j =: −iI ij . (3.8)

Here µ is a real parameter of the mass dimension. In the new basis, the (anti)commutators
(3.1), (3.2) are rewritten as

{Qi, Q̄j} = −2αµ I ij + 2δij [H + (1 + α)µF ] ,

{Si, S̄j} = 2αµ I ij + 2δij [H− (1 + α)µF ] ,

{Si, Q̄j} = 2δijT, {Qi, S̄j} = 2δijT̄ ,

{Qi, Sk} = −2 (1 + α)µ εikC, {Q̄j , S̄k} = 2 (1 + α)µ εjkC̄ , (3.9)

[

I ij, I
k
l

]

= δkj I
i
l − δilI

k
j ,

[

I ij, Q̄l

]

=
1

2
δijQ̄l − δilQ̄j ,

[

I ij, Q
k
]

= δkjQ
i − 1

2
δijQ

k,

[

I ij, S̄l

]

=
1

2
δijS̄l − δil S̄j ,

[

I ij, S
k
]

= δkj S
i − 1

2
δijS

k , (3.10)

[

C, C̄
]

= 2F, [F,C] = C,
[

F, C̄
]

= −C̄,
[

C, Q̄j

]

= −εjlSl,
[

C, S̄j

]

= −εjlQl,
[

C̄, Qi
]

= −εikS̄k ,
[

C̄, Si
]

= −εikQ̄k ,
[

F, Q̄l

]

= −1

2
Q̄l ,

[

F,Qk
]

=
1

2
Qk ,

[

F, S̄l

]

= −1

2
S̄l ,

[

F, Sk
]

=
1

2
Sk , (3.11)

[

T, T̄
]

= −2µH, [H, T ] = µT,
[

H, T̄
]

= −µ T̄ ,
[

T,Qi
]

= −µSi,
[

T, S̄j

]

= −µ Q̄j ,
[

T̄ , Q̄j

]

= µ S̄j ,
[

T̄ , Si
]

= µQi ,
[

H, S̄l

]

= −µ
2
S̄l ,

[

H, Sk
]

=
µ

2
Sk ,

[

H, Q̄l

]

=
µ

2
Q̄l ,

[

H, Qk
]

= −µ
2
Qk . (3.12)

The bosonic sector consisting of the three mutually commuting algebras is now given by the
following sets of the generators

su(2)⊕ su′(2)⊕ so(2, 1) ≡ {I ik} ⊕ {F,C, C̄} ⊕ {H, T, T̄} . (3.13)

According to (3.3) and (3.8), the conjugation rules are as follows

(

Qk
)†

= Q̄k ,
(

Sk
)†

= S̄k ,

(F )† = F, (C)† = C̄ ,
(

Iki
)†

= I ik , H† = H , (T )† = T̄ . (3.14)
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Note the relation

H = Ĥ +
µ2

4
K̂ . (3.15)

In the contraction limit µ = 0, the algebra (3.9) – (3.12) becomes a kind of N = 8, d = 1
Poincaré superalgebra (with the common Hamiltonian H) extended by the central charges T, T̄
originating from the so(2, 1) generators. The remaining two su(2) subalgebras become outer
automorphism algebras which form a semi-direct product with this N = 8, d = 1 superalgebra4.
At any µ 6= 0, the relations (3.8) defining the new basis contain no singularities, and so eqs.
(3.9) – (3.12) yield an equivalent form of the original superalgebraD (2, 1;α). After coming back
to the original superconformal generators any dependence of the (anti)commutation relations
on µ disappears while it still retains in the realizations of D (2, 1;α) on the coordinates of the
SU(2|1) superspaces (see below). Taking the µ = 0 limit in this basis gives rise to the standard
parabolic realizations of D (2, 1;α) in the flat N = 4, d = 1 superspaces.

The su(2|1) basis in D (2, 1;α) makes manifest some remarkable properties of this superal-
gebra which are implicit in the “standard” basis.

i. It is straightforward to see that the superconformal algebra (3.9)-(3.12) includes as a sub-
algebra the following superalgebra su(2|1):

{Qi, Q̄j} = −2αµ I ij + 2δij [H + (1 + α)µF ] ,
[

I ij , Q̄l

]

=
1

2
δijQ̄l − δilQ̄j ,

[

I ij, Q
k
]

= δkjQ
i − 1

2
δijQ

k,

[

F, Q̄l

]

= −1

2
Q̄l ,

[

F,Qk
]

=
1

2
Qk,

[

H, Q̄l

]

=
µ

2
Q̄l ,

[

H, Qk
]

= −µ
2
Qk. (3.16)

These relations coincide with (2.4) under the following identifications

m(µ) = −αµ , (3.17)

H(µ) = H + µF. (3.18)

We observe that the closure of the SU(2|1) supercharges depends on the parameter α, because
the SU(2) and SU ′(2) generators Jij = −iIij and Li′j′ ∼

{

F,C, C̄
}

appear in the basic anti-
commutator (3.1) with the factors α, 1+α, respectively. The U(1) generator F in (3.16) comes
from su′(2), while the first su(2) with the generators Iij is just su(2) ⊂ su(2|1) .

ii. We see from (3.9) – (3.12) that there exists another su(2|1) ⊂ D (2, 1;α) generated by the
generators Si, S̄j and corresponding to the identification

m(−µ) = αµ , (3.19)

H(−µ) = H− µF (3.20)

in (2.4). Hence, its (anti)commutation relations are obtained from (3.16) via the substitu-
tion µ → −µ and passing to the new independent supercharges (Si, S̄

j). As follows from

4The full automorphism group SO(8) of the N = 8, d = 1 superalgebra is broken down to SO(4) ∼ SU(2)×
SU ′(2) due to the presence of central charges T, T̄ .
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(3.9) – (3.12), all the remaining generators of D (2, 1;α) (i.e. T, T̄ , C, C̄) appear in the cross-
anticommutators of the supercharges (Qi, Q̄j) with (Si, S̄

j). Thus the superalgebra D (2, 1;α)
can be represented as a closure of its two su(2|1) supersubalgebras: su(2|1) given by the re-
lations (3.16) and another independent su(2|1) with the (anti)commutation relations obtained
from those of the former su(2|1) through the replacement µ → −µ. We were not able to find
such a statement about the structure of D (2, 1;α) in the literature. This property is similar
to the property that the N = 1, d = 4 superconformal group SU(2, 2|1) can be viewed as a
closure of its two different OSp(1, 4) subgroups related to each other through the analogous
“reflection” of the anti-De-Sitter radius as a parameter of contraction to the flat N = 1, d = 4
Poincaré supersymmetry [19]. In what follows, this observation will be useful for constructing
D (2, 1;α) invariant subclasses of the SU(2|1) invariant actions.

iii. In the cases α = −1 and α = 0 the supergroup D (2, 1;α) is reduced to the semi-direct
product (3.7), with SU(2)ext being generated, respectively, by Li′,j′ or Jij = −iIij . The re-
maining SU(2) subgroups enter the relevant PSU(1, 1|2) factors. Each of the corresponding
superalgebras psu(1, 1|2) can still be interpreted as a closure of its two su(2|1) subalgebras, like
in the case of α ∈ R\{0},R\{−1}. In particular, the superalgebra (3.16) at α = −1 is identical
to (2.1) with m = µ and H as the U(1) generator. The generator F splits off as an external
automorphism.

iv. One more peculiarity is associated with the presence of the “composite” deformation
parameter m = −αµ in (3.16). It vanishes not only in the standard contraction limit µ = 0,
but also at α = 0 with µ 6= 0 . For α = 0, the superalgebra (3.16) is reduced to the flat N = 4
superalgebra

{Qi, Q̄j} = 2δij (H + µF ) ,
[

F, Q̄l

]

= −1

2
Q̄l ,

[

F,Qk
]

=
1

2
Qk,

[

H, Q̄l

]

=
µ

2
Q̄l ,

[

H, Qk
]

= −µ
2
Qk. (3.21)

This algebra is still a subalgebra of D(2, 1;α=0). However, it does not coincide with the stan-
dard flatN = 4, d = 1 Poincaré superalgebra corresponding to the limit µ = 0, because the r.h.s.
of the anticommutator in (3.21) still involves µ and is a sum of H and the internal U(1) charge
F . The SU(2) generators Iji now define automorphisms of both the superalgebra (3.21) and the
α = 0 superalgebra psu(1, 1|2), while F is an internal U(1) generator. The whole D(2, 1;α=0)
superalgebra (including the so(2, 1) generators and those of the su′(2) ∼ {F,C, C̄}) can now
be treated as a closure of the superalgebra (3.21) and its µ→ −µ counterpart5.

To avoid a confusion, let us point out that both (3.21) and (3.4) can of course be regarded
as the Poincaré N = 4, d = 1 superalgebras. However, in contrast to (3.4), the superalgebra
(3.21) is embedded in the superconformal algebra in a different way, with the Hamiltonian
H = H + µF defined in (3.18), instead of the standard Ĥ in (3.4) (recall eq. (3.15)). In the
limit µ → 0, any difference between H, H and Ĥ disappears.

5In the α = 0 case one can still define su(2|1) ⊂ D(2, 1;α=0) which involves su′(2) ∼ {F,C, C̄} as the
internal subalgebra, as well as the proper analog of the U(1) generator H.
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v. It is worth noting that the parameter α characterizes only the superconformal mechanics
models, while the generic SU(2|1) models lack any dependence on it. So in the case of super-
conformal models we deal with the pair of parameters, α and µ. In the particular case α = −1,
we have m = µ.

vi. Besides the SU(2|1) superspaces (2.5), (2.12), we can now consider another type of the
SU(2|1) superspace defined as the supercoset

SU(2|1)⋊ U(1)ext
SU(2)× U(1)int

∼ {Qi, Q̄j,H, F, I ij}
{I ij, F}

. (3.22)

According to (3.13), this definition of superspace matches to the proper embedding of SU(2|1)
in D (2, 1;α) for α ∈ R\{0}:

D(2, 1;α)
bos−−−→ SU(2) × SU(2) × SO(2, 1),





y





y
Iji





y
F





y
H

SU(2|1)⋊ U(1)ext
bos−−−→ SU(2) × U(1)ext × U(1).

(3.23)

In the case α = −1 corresponding to the second line in (3.23), one can omit the generator F
in (3.22) since it becomes an external automorphism. So (3.22) is reduced to (2.12) in this
case. For generic α ∈ R\{−1}, the coset (3.22) “interpolates” between (2.5) and (2.12) since
F appears in the r.h.s. of the anticommutator in (3.16) along with the generator H, and so
cannot be decoupled.

vii. In the limit α = 0, the relevant coset is

(N = 4, d = 1)⋊ U(1)ext
U(1)int

∼ {Qi, Q̄j ,H, F}
{F} , (3.24)

where (N = 4, d = 1)⋊ U(1)ext stands for the semi-direct product of the supergroup with the
algebra (3.21) and the external U(1) automorphism generated by F ∈ {F,C, C̄}. We can deal
with the coset superspace (3.24) in the standard manner, just substituting α = 0 into all the
relations of the SU(2|1) superspace formalism pertinent to the choice (3.22).

3.1 Superconformal generators

Superconformal generators of (3.9) – (3.12) can be naturally realized on the SU(2|1) superspace
(3.22). An element of this supercoset is defined as

g1 = exp

{(

1 +
2αµ

3
θ̄kθk

)

(

θiQ
i + θ̄jQ̄j

)

}

exp {itH}, (3.25)

where the superspace coordinates {t, θi, θ̄k} coincide with those defined in (2.6). Because of the
relation (3.18), the coset elements (3.25) and (2.6) are related as

g1 = g exp{−iµtF} . (3.26)
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In the particular case α = 0, the relevant superspace coset (3.24) is parametrized by the flat
superspace coordinates ζ(α=0) = {t, θi, θ̄k}. An element of this coset is obtained by setting α = 0
in (3.25).

Dropping matrix parts of generators, one can obtain the SU(2|1) supercharges for generic
α just through the substitution m = −αµ in (2.7):

Qi =
∂

∂θi
+ 2αµ θ̄iθ̄k

∂

∂θ̄k
+ iθ̄i∂t , Q̄j =

∂

∂θ̄j
− 2αµ θjθk

∂

∂θk
+ iθj∂t . (3.27)

They generate the su(2|1) superalgebra (3.16) with the bosonic generators

I ij =

(

θ̄i
∂

∂θ̄j
− θj

∂

∂θi

)

− 1

2
δij

(

θ̄k
∂

∂θ̄k
− θk

∂

∂θk

)

,

H = i∂t −
µ

2

(

θ̄k
∂

∂θ̄k
− θk

∂

∂θk

)

, F =
1

2

(

θ̄k
∂

∂θ̄k
− θk

∂

∂θk

)

. (3.28)

The extra supercharges of the superconformal algebra D (2, 1;α) are defined as

Si = e−iµt

{[

1− (1 + 2α)µ θ̄kθk −
1

4
(1 + 2α)2 µ2 (θ)2

(

θ̄
)2
]

∂

∂θi
+ 2 (1 + α)µ θ̄iθk

∂

∂θk

+ iθ̄i
[

1 + (1 + 2α)µ θ̄kθk
]

∂t

}

,

S̄j = eiµt
{[

1− (1 + 2α)µ θ̄kθk −
1

4
(1 + 2α)2 µ2 (θ)2

(

θ̄
)2
]

∂

∂θ̄j
− 2 (1 + α)µ θj θ̄

k ∂

∂θ̄k

+ iθj
[

1 + (1 + 2α)µ θ̄kθk
]

∂t

}

. (3.29)

The anticommutators of (3.27) with (3.29) give the new bosonic generators

T = e−iµt

{

i

[

1− 1

4
(1 + 2α)µ2 (θ)2

(

θ̄
)2
]

∂t + µ
[

1− (1 + 2α)µ θ̄kθk
]

θi
∂

∂θi

}

,

T̄ = eiµt
{

i

[

1− 1

4
(1 + 2α)µ2 (θ)2

(

θ̄
)2
]

∂t − µ
[

1− (1 + 2α)µ θ̄kθk
]

θ̄i
∂

∂θ̄i

}

,

C = e−iµtεjl
[

1 + (1 + 2α)µ θ̄kθk
]

θ̄j
∂

∂θl
,

C̄ = eiµtεjl
[

1 + (1 + 2α)µ θ̄kθk
]

θj
∂

∂θ̄l
. (3.30)

Under the ε, ε̄ transformations generated by (3.29),

δθi =

[

1− (1 + 2α)µ θ̄kθk −
1

4
(1 + 2α)2 µ2 (θ)2

(

θ̄
)2
]

εi e
−iµt

+2 (1 + α)µ εkθ̄
kθi e

−iµt,

δθ̄i =

[

1− (1 + 2α)µ θ̄kθk −
1

4
(1 + 2α)2 µ2 (θ)2

(

θ̄
)2
]

ε̄i eiµt

− 2 (1 + α)µ ε̄kθkθ̄
i eiµt,

δt = i
(

ε̄kθke
iµt + εkθ̄

ke−iµt
) [

1 + (1 + 2α)µ θ̄kθk
]

, (3.31)
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the SU(2|1) invariant measure (2.10) is transformed as

δε dζ = 2µ dζ
(

1− µ θ̄kθk
) (

ε̄iθi e
iµt − εiθ̄

i e−iµt
)

. (3.32)

Starting from the new coset given by (3.25) and taking advantage of the relation (3.26), one
can calculate the relevant covariant derivatives

Di = e−
i
2
µt

{[

1− αµ θ̄kθk −
3

8
α2µ2 (θ)2

(

θ̄
)2
]

∂

∂θi
+ αµ θ̄iθj

∂

∂θj
− iθ̄i∂t

− (1 + α)µ θ̄iF̃ + αµ θ̄j
(

1 + αµ θ̄kθk
)

Ĩ ij

}

,

D̄j = e
i
2
µt

{

−
[

1− αµ θ̄kθk −
3

8
α2µ2 (θ)2

(

θ̄
)2
]

∂

∂θ̄j
− αµ θ̄kθj

∂

∂θ̄k
+ iθj∂t

+ (1 + α)µ θjF̃ − αµ θk
(

1 + αµ θ̄kθk
)

Ĩkj

}

,

D(t) = ∂t . (3.33)

Together with the matrix generators Ĩ ik, F̃ they mimic the superalgebra (3.16). In the particular
case α = −1, the matrix generator F̃ drops out from (3.33), which is consistent with the
superalgebra (3.16) at α = −1 [5]. In this case the supercoset (3.22), (3.25) is reduced to the
supercoset (2.12) with H̃ = H and m = µ. In the case α = 0, the generators Ĩ ik drop out
(they become the outer automorphism ones). The α = 0 covariant derivatives correspond to
the degenerate supercoset (3.24).

The redefinition (3.17) allows one to avoid singularities at α = 0. Taking α = 0 in the su-
perconformal generators (3.27) – (3.30), one can naturally pass to the generators corresponding
to the coset space (3.24) with the relevant algebra (3.21). Thus, within the SU(2|1) superspace
defined as the supercoset (3.22) with the elements (3.25), the superspace realization of super-
conformal generators has been written in the universal form consistent with both choices α = 0
and α 6= 0, i.e., with any choice of α ∈ R. This refers to the covariant derivatives (3.33) as well.

Any dependence of the superalgebra relations (3.9) – (3.12) on the dimensionful parameter µ
naturally disappears after passing to the original basis (3.1), (3.2). However, in the realization
of the generators (3.8) on the superspace coordinates the dependence on µ is still retained.
Thus the parameter µ is a deformation parameter of the particular superspace realization of
(3.1), (3.2). This new deformed realization corresponds to the trigonometric type of N = 4
superconformal mechanics [14]. Sending µ → 0 in these realizations (and in the corresponding
realizations on the d = 1 fields) reduces the deformed superconformal models to the standard
superconformal mechanics models of the parabolic type [12, 13, 6].

To be more precise, the trigonometric form of the conformal generators {H, T, T̄} ,

H = i∂t , T = ie−iµt∂t , T̄ = ieiµt∂t , (3.34)

is obtained as the bosonic truncations of the generators defined by eqs. (3.28), (3.30) (or an
alternative realization of these generators given in the next subsection). The standard so(2, 1)
generators Ĥ, K̂ and D̂ defined in (3.5) and (3.8) are expressed, respectively, as

Ĥ =
i

2
(1 + cosµt ) ∂t , K̂ =

2i

µ2
(1− cosµt ) ∂t , D̂ =

i

µ
sinµt ∂t , µ 6= 0 . (3.35)
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These generators satisfy the conventional relations of the d = 1 conformal algebra:

[

D̂, Ĥ
]

= −iĤ,
[

D̂, K̂
]

= iK̂,
[

Ĥ, K̂
]

= 2iD̂. (3.36)

Thus, the definition of conformal superalgebra by eqs. (3.9) – (3.12) automatically provides
the trigonometric form for the conformal algebra so(2, 1) [10].

In the limit µ → 0 the generators (3.35) turn into the standard parabolic generators

Ĥ = i∂t , D̂ = it∂t , K̂ = it2∂t . (3.37)

The same properties are inherent to the total set of the D(2, 1;α) generators (3.8) for µ 6= 0.
Thus, we treat the superspace realization of the superconformal symmetry generators found
in this paper as a trigonometric deformation of the parabolic N = 4, d = 1 superconformal
generators constructed in [12, 13, 6].

The main reason for considering the basis (3.34) is that the generator H = Ĥ + 1
4
µ2K̂

is directly given by the time-derivative, H = i∂t [10]. Another peculiarity of this basis con-
cerns Cartan generator (diagonal generator) of conformal algebra [11]. In (3.34) we have the
Hamiltonian H as Cartan generator, while in the parabolic basis (3.37) the Cartan generator of
so(2, 1) is associated with the dilatation generator D̂. Thus the relevant quantum mechanical
system must be solved in terms of eigenvalues and eigenstates of the quantum Hamiltonian
H = Ĥ + 1

4
µ2K̂ which just coincides with the “improved” Hamiltonian of the d = 1 conformal

mechanics [11] ensuring the energy spectrum to be bounded from below6. In the next subsection
we will demonstrate that there is a basis in the SU(2|1) superspace in which the full generator
H defined in (3.28) (not only its bosonic truncation) becomes just i∂t.

3.2 An alternative realization of superconformal generators

According to (3.9), the supercharges Q form the su(2|1) superalgebra with the deformation
parameter µ, while the supercharges S form the su(2|1) superalgebra with −µ. Analogously,
in the case α = 0, the relevant deformed superalgebras are (3.21) and its −µ counterpart. In
the limit µ = 0 both sets of supercharges reproduce the same flat N = 4, d = 1 supercharges.

Here we demonstrate that, after the appropriate redefinition of the SU(2|1) superspace coor-
dinates, the whole set of the superconformal generators can be constructed in terms of the pair
of deformed supercharges Q(µ) and S(µ) ≡ Q(−µ) . This explains why the SU(2|1) and super-
conformal transformations of the component fields obtained below for the multiplets (1, 4, 3),
(2, 4, 2) can be represented as deformations of the standard N = 4, d = 1 transformations of
component fields, with the deformation parameters µ and −µ, respectively.

The new coordinates {t, θ̃j , ¯̃θi} represent the same supercoset (3.22) and are related to the
previously employed super-coordinates as

θ̃j = e
i
2
µtθj

[

1 +
1

2
(1 + 2α)µ θ̄kθk

]

, ¯̃θi =
(

θ̃j

)

= e−
i
2
µtθ̄i

[

1 +
1

2
(1 + 2α)µ θ̄kθk

]

. (3.38)

6 The orthogonal combination Hh = Ĥ − 1

4
µ2K̂ corresponds to the hyperbolic case discussed in Appendix

C. It yields a non-unitary model.
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The supercharges (3.27) are rewritten as

Qi = e
i
2
µt

{[

1 +
1

2
(1 + 2α)µ

¯̃
θkθ̃k −

1

16
(1 + 2α)µ2 (θ̃)2

( ¯̃
θ
)2
]

∂

∂θ̃i
− (1 + α)µ

¯̃
θiθ̃k

∂

∂θ̃k

+αµ
¯̃
θi
¯̃
θk

∂

∂
¯̃
θk

+ i
¯̃
θi
[

1− 1

2
(1 + 2α)µ

¯̃
θkθ̃k

]

∂t

}

,

Q̄j = e−
i
2
µt

{[

1 +
1

2
(1 + 2α)µ ¯̃θkθ̃k −

1

16
(1 + 2α)µ2 (θ̃)2

( ¯̃θ
)2
]

∂

∂ ¯̃θj
+ (1 + α)µ θ̃j

¯̃θk
∂

∂ ¯̃θk

−αµ θ̃j θ̃k
∂

∂θ̃k
+ iθ̃j

[

1− 1

2
(1 + 2α)µ

¯̃
θkθ̃k

]

∂t

}

. (3.39)

The new form of the supercharges (3.29) is given by

Si = e−
i
2
µt

{[

1− 1

2
(1 + 2α)µ ¯̃θkθ̃k −

1

16
(1 + 2α)µ2 (θ̃)2

( ¯̃θ
)2
]

∂

∂θ̃i
+ (1 + α)µ ¯̃θiθ̃k

∂

∂θ̃k

−αµ ¯̃θi ¯̃θk
∂

∂
¯̃
θk

+ i ¯̃θi
[

1 +
1

2
(1 + 2α)µ ¯̃θkθ̃k

]

∂t

}

,

S̄j = e
i
2
µt

{[

1− 1

2
(1 + 2α)µ

¯̃
θkθ̃k −

1

16
(1 + 2α)µ2 (θ̃)2

( ¯̃
θ
)2
]

∂

∂ ¯̃θj
− (1 + α)µ θ̃j

¯̃
θk

∂

∂ ¯̃θk

+αµ θ̃jθ̃k
∂

∂θ̃k
+ iθ̃j

[

1 +
1

2
(1 + 2α)µ ¯̃θkθ̃k

]

∂t

}

. (3.40)

We observe that they are obtained from the supercharges (3.39) just through the change of the
sign of µ, S(µ) ≡ Q(−µ). The bosonic generators (3.28) of SU(2|1) are written as

I ij =

(

¯̃
θi

∂

∂
¯̃
θj

− θ̃j
∂

∂θ̃i

)

− 1

2
δij

(

¯̃
θk

∂

∂
¯̃
θk

− θ̃k
∂

∂θ̃k

)

,

F =
1

2

(

¯̃
θk

∂

∂
¯̃
θk

− θ̃k
∂

∂θ̃k

)

, H = i∂t . (3.41)

In this new realization the Hamiltonian H takes the correct form as the time translation gen-
erator. The rest of the bosonic generators (3.30) is rewritten as

T = e−iµt

{

i

[

1− 1

4
(1 + 2α)µ2 (θ̃)2

( ¯̃θ
)2
]

∂t +
µ

2

(

¯̃θk
∂

∂
¯̃
θk

+ θ̃k
∂

∂θ̃k

)

+
1

2
(1 + 2α)µ2 ¯̃θiθ̃i

(

¯̃θk
∂

∂
¯̃
θk

− θ̃k
∂

∂θ̃k

)}

,

T̄ = eiµt
{

i

[

1− 1

4
(1 + 2α)µ2 (θ̃)2

( ¯̃θ
)2
]

∂t −
µ

2

(

¯̃θk
∂

∂
¯̃
θk

+ θ̃k
∂

∂θ̃k

)

+
1

2
(1 + 2α)µ2 ¯̃θiθ̃i

(

¯̃θk
∂

∂ ¯̃θk
− θ̃k

∂

∂θ̃k

)}

,

C = εjl
¯̃θj
∂

∂θ̃l
, C̄ = εjlθ̃j

∂

∂ ¯̃θl
. (3.42)

Note that the supercharges (3.39), (3.40) acquired the exponential factors ∼ e±
i
2
µt which are

needed for ensuring the correct commutation relations with H = i∂t. Also note that the
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su(2) and su′(2) generators now include no µ dependence at all, while the so(2, 1) genera-
tors T and T̄ are just related by the reflection µ ↔ −µ , T (−µ) = T̄ (µ) . So the prop-
erty that the whole superalgebra D(2, 1;α) is contained in the closure of

(

Qi(µ) , Q̄
j(µ)

)

and
(

Si(µ) = Qi(−µ) , S̄j(µ) = Q̄j(−µ)
)

becomes manifest in the new parametrization of the
SU(2|1) superspace.

For further use, we give the new basis form of the SU(2|1) invariant measure (2.10):

dζ̃ = dt d2θ̃ d2
¯̃
θ
(

1 + µ
¯̃
θkθ̃k

)

. (3.43)

Under the ε, ε̄ transformations generated by (3.40) it is transformed as

δε dζ̃ = 2µ dζ̃

[

1− 1

2
(3 + 2α)µ ¯̃θkθ̃k

]

(

ε̄iθ̃ie
i
2
µt − εi

¯̃θie−
i
2
µt
)

. (3.44)

4 The multiplet (1,4,3)

4.1 Constraints

The multiplet (1, 4, 3) was described in [4] in the framework of the SU(2|1) superspace (2.5).
It is represented by the real neutral superfield G satisfying the SU(2|1) covariantization of the
standard (1, 4, 3) multiplet constraints

εljD̄l D̄j G = εljDl Dj G = 0 ,
[

Di, D̄i

]

G = 4mG . (4.1)

They are solved by

G =
[

1−m θ̄kθk +m2 (θ)2
(

θ̄
)2
]

x+
ẍ

4
(θ)2

(

θ̄
)2 − i θ̄kθk

(

θi ψ̇
i + θ̄j ˙̄ψj

)

+
(

1− 2m θ̄kθk
) (

θi ψ
i − θ̄j ψ̄j

)

+ θ̄jθiB
i
j , Bk

k = 0 . (4.2)

For studying superconformal properties of this SU(2|1) supermultiplet it will be more con-
venient to reformulate it in the superspace (3.22). By rewriting the constraints (4.1) through
the covariant derivatives (3.33) as

εljD̄l D̄j G = εljDl Dj G = 0 ,
[

Di, D̄i

]

G = −4αµG , (4.3)

we obtain

G = x
[

1 + αµ θ̄kθk + α2µ2 (θ)2
(

θ̄
)2
]

+
ẍ

4
(θ)2

(

θ̄
)2 − iθ̄kθk

(

θi ψ̇
i e

i
2
µt + θ̄j ˙̄ψj e

− i
2
µt
)

+

[

1 +
1

2
(1 + 4α)µ θ̄kθk

]

(

θi ψ
i e

i
2
µt − θ̄j ψ̄j e

− i
2
µt
)

+ θ̄jθiB
i
j , (4.4)

where we have redefined

ψi → ψie
i
2
µt, ψ̄j → ψ̄je

− i
2
µt. (4.5)

This field redefinition makes the U(1) generator F act only on fermionic fields and ensures
that the operator H is realized on the component fields as the pure time derivative i∂t without
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additional U(1) rotation terms. We see that the irreducible set of the off-shell component fields
is x(t), ψi(t), ψ̄i(t), B

i
j(t) (B

k
k = 0), i.e., G reveals just the (1, 4, 3) content. In the contraction

limit µ = 0, it is reduced to the ordinary (1, 4, 3) superfield.
As the most important requirement, the constraints (4.3) (rewritten through the covariant

derivatives (3.33)) must be covariant under the superconformal symmetry D (2, 1;α). From this
requirement, one can actually restore the supercharges (3.29) and the bosonic generators (3.30)
as the differential operators acting on the superspace (3.22). Moreover, it implies that these
extra generators for the multiplet (1, 4, 3) should be extended by the proper weight terms. The
supercharges (3.29) are extended as

Si = e−iµt

{[

1− (1 + 2α)µ θ̄kθk −
1

4
(1 + 2α)2 µ2 (θ)2

(

θ̄
)2
]

∂

∂θi
+ 2 (1 + α)µ θ̄iθk

∂

∂θk

+ iθ̄i
[

1 + (1 + 2α)µ θ̄kθk
]

∂t + 2αµ θ̄i
(

1− µ θ̄kθk
)

}

,

S̄j = eiµt
{[

1− (1 + 2α)µ θ̄kθk −
1

4
(1 + 2α)2 µ2 (θ)2

(

θ̄
)2
]

∂

∂θ̄j
− 2 (1 + α)µ θj θ̄

k ∂

∂θ̄k

+ iθj
[

1 + (1 + 2α)µ θ̄kθk
]

∂t − 2αµ θj
(

1− µ θ̄kθk
)

}

. (4.6)

Respectively, the bosonic generators are modified as

T = e−iµt

{

i

[

1− 1

4
(1 + 2α)µ2 (θ)2

(

θ̄
)2
]

∂t + µ
[

1− (1 + 2α)µ θ̄kθk
]

θi
∂

∂θi

}

+αµ e−iµt

[

1− µ θ̄kθk +
1

4
(1− 2α)µ2 (θ)2

(

θ̄
)2
]

,

T̄ = eiµt
{

i

[

1− 1

4
(1 + 2α)µ2 (θ)2

(

θ̄
)2
]

∂t − µ
[

1− (1 + 2α)µ θ̄kθk
]

θ̄i
∂

∂θ̄i

}

−αµ eiµt
[

1− µ θ̄kθk +
1

4
(1− 2α)µ2 (θ)2

(

θ̄
)2
]

,

C = e−iµtεjl
[

1 + (1 + 2α)µ θ̄kθk
]

θ̄j
∂

∂θl
+ αµ

(

θ̄
)2
e−iµt,

C̄ = eiµtεjl
[

1 + (1 + 2α)µ θ̄kθk
]

θj
∂

∂θ̄l
− αµ (θ)2 eiµt. (4.7)

These modifications of the additional D(2, 1;α) generators imply the following “passive” trans-
formation law for the superfield G under the εi, ε̄

j transformations

δεG = 2αµ
(

1− µ θ̄kθk
) (

ε̄iθi e
iµt − εiθ̄

i e−iµt
)

G . (4.8)

All other transformations are produced by commuting (4.8) with the odd SU(2|1) transfor-
mations which are generated by the pure differential operators (3.27). It is worth pointing
out once more that all additional weight terms in the D(2, 1;α) generators are necessary for
the D(2, 1;α) covariance of the (1, 4, 3) constraints (4.3) and, in fact, can be deduced from
requiring this covariance. Making the bosonic truncation of the conformal generators with the
weight terms,

H = i∂t , T = e−iµt (i∂t + αµ) , T̄ = eiµt (i∂t − αµ) , (4.9)
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one observes that α can be identified with the scaling dimension parameter λD for the multiplet
(1, 4, 3) [14].

Digression. In Section 3.2, we showed that, after passing to the new superspace basis

{t, θ̃j , ¯̃θi}, the differential parts of the D(2, 1;α) supercharges in the µ-representation satisfy
the relation S(µ) = Q(−µ), thus making manifest the property that D(2, 1;α) is the closure
of two its su(2|1) subalgebras, one defined at µ and the other at −µ . Due to the presence
of the additional weight terms, the supercharges (4.6) written in the new basis do not longer
exhibit this nice correspondence. To restore it, one needs to make the appropriate θ-dependent
rescaling of the superfield G,

G = AG0 , (4.10)

and to pick up the factor A in such a way that the extra weight terms acquired by the super-
charges Qi(µ) and Si(µ) when acting on G0 ensure the needed relation. The factor A is defined
up to a freedom associated with a real parameter β:

A(θ̃) = 1 + αµ ¯̃θkθ̃k −
1

2
βµ2(θ̃)2

( ¯̃θ
)2
, (4.11)

G0(t, θ̃) =

[

1 +
1

2
(β − α)µ2(θ̃)2

( ¯̃θ
)2
]

x+
ẍ

4
(θ̃)2

( ¯̃θ
)2

+ θ̃i ψ
i − ¯̃θj ψ̄j

−i ¯̃θkθ̃k
(

θ̃i ψ̇
i +

¯̃
θj ˙̄ψj

)

+
¯̃
θj θ̃iB

i
j . (4.12)

The ǫ and ε variations of G0 are related just through the substitution µ → −µ ,

δǫG0 = −µ
[

α− 1

2
(4β − 3α)µ ¯̃θkθ̃k

]

(

ǭiθ̃i e
− i

2
µt − ǫi

¯̃θi e
i
2
µt
)

G0 ,

δεG0 = µ

[

α +
1

2
(4β − 3α)µ

¯̃
θkθ̃k

]

(

ε̄iθ̃i e
i
2
µt − εi

¯̃
θi e−

i
2
µt
)

G0 , (4.13)

and imply the following expressions for the total D(2, 1;α) generators in the realization on G0:

Qi = e
i
2
µt

{[

1 +
1

2
(1 + 2α)µ ¯̃θkθ̃k −

1

16
(1 + 2α)µ2 (θ̃)2

( ¯̃θ
)2
]

∂

∂θ̃i
− (1 + α)µ ¯̃θiθ̃k

∂

∂θ̃k

+αµ ¯̃θi ¯̃θk
∂

∂ ¯̃θk
+ i ¯̃θi

[

1− 1

2
(1 + 2α)µ ¯̃θkθ̃k

]

∂t − αµ ¯̃θi +
1

2
(4β − 3α)µ2 ¯̃θi ¯̃θkθ̃k

}

,

Q̄j = e−
i
2
µt

{[

1 +
1

2
(1 + 2α)µ

¯̃
θkθ̃k −

1

16
(1 + 2α)µ2 (θ̃)2

( ¯̃
θ
)2
]

∂

∂
¯̃
θj

+ (1 + α)µ θ̃j
¯̃
θk

∂

∂
¯̃
θk

−αµ θ̃j θ̃k
∂

∂θ̃k
+ iθ̃j

[

1− 1

2
(1 + 2α)µ ¯̃θkθ̃k

]

∂t + αµ θ̃i −
1

2
(4β − 3α)µ2 θ̃i

¯̃θkθ̃k

}

,

Si(µ) = Qi(−µ) , S̄j(µ) = Q̄j(−µ) . (4.14)

One can directly check that their (anti)commutators form the superalgebra D (2, 1;α). The

CBPF-NF-013/14 17



so(2, 1) generators T , T̄ are given by

T = e−iµt

{

i

[

1− 1

4
(1 + 2α)µ2 (θ̃)2

( ¯̃
θ
)2
]

∂t +
µ

2

(

¯̃
θk

∂

∂
¯̃
θk

+ θ̃k
∂

∂θ̃k

)

+
1

2
(1 + 2α)µ2 ¯̃θiθ̃i

(

¯̃
θk

∂

∂
¯̃
θk

− θ̃k
∂

∂θ̃k

)

+ αµ

[

1 +

(

3

4
− β

α

)

µ2 (θ̃)2
( ¯̃
θ
)2
]}

,

T̄ = eiµt
{

i

[

1− 1

4
(1 + 2α)µ2 (θ̃)2

( ¯̃
θ
)2
]

∂t −
µ

2

(

¯̃
θk

∂

∂
¯̃
θk

+ θ̃k
∂

∂θ̃k

)

+
1

2
(1 + 2α)µ2 ¯̃θiθ̃i

(

¯̃
θk

∂

∂
¯̃
θk

− θ̃k
∂

∂θ̃k

)

− αµ

[

1 +

(

3

4
− β

α

)

µ2 (θ̃)2
( ¯̃
θ
)2
]}

. (4.15)

The rest of bosonic generators contain no weight terms.
The parameter β appears neither in the structure constants of D (2, 1;α) nor in the super-

conformal component actions (see next Subsections), so it can be chosen at will. One choice
is β = 3

4
α , which ensures the simplest structure of the weight terms in (4.14), (4.15), (4.13).

Another possible choice is β = α, under which the superfield G0 in (4.12) contains no µ depen-
dence at all. In this case, the SU(2|1) constraints (4.3) are reduced to the linear combination
of the flat constraints:

εikD
iDkG0 = εikD̄iD̄kG0 = 0 ,

[

Di, D̄i

]

G0 = 0 , (4.16)

Di =
∂

∂θ̃i
− i ¯̃θi∂t , D̄j = − ∂

∂ ¯̃θj
+ i θ̃j∂t . (4.17)

These constraints are still covariant under the relevant trigonometric realization of D (2, 1;α)
(with β = α in (4.14), (4.15), (4.13)). The corresponding superconformal actions of G0 written
as integrals over the SU(2|1) superspace do not coincide with the standard ones constructed
as integrals over flat N = 4, d = 1 superspace.

As the final remark, we note that the constraints (4.3) can be generalized as

εljD̄l D̄j G̃ = εljDl Dj G̃ = 0 ,
[

Di, D̄i

]

G̃ = −4αµ G̃− 4c . (4.18)

Their solution is

G̃
(

x, ψ, ψ̄, B
)

= G
(

x, ψ, ψ̄, B
)

+ c θ̄jθj
(

1 + 2αµ θ̄kθk
)

, (4.19)

where G
(

x, ψ, ψ̄, B
)

was defined in (4.4). Once again, this solution can be adapted to the
supercoset (3.22). We observe that the superconformal covariance of the corresponding version
of the constraints (4.18) implies the additional condition

cDl Dl
(

1− µ θ̄kθk
) (

ε̄iθi e
iµt − εiθ̄

i e−iµt
)

= 0 . (4.20)

Substituting the explicit expressions (3.33) for the covariant derivatives, one can show that at
c 6= 0 the condition (4.20) is satisfied only for α = −1. Then the superfield G̃ transform as

δεG̃ = −2µ
(

1− µ θ̄kθk
) (

ε̄iθi e
iµt − εiθ̄

i e−iµt
)

G̃ . (4.21)

Thus at c 6= 0 the relevant superconformal group is reduced to the supergroup PSU(1, 1|2)⋊
U(1). At c = 0, any α 6= 0 is admissible, including α = −17. In what follows, the special case
α = 0 will be considered separately.

7At c = 0, α = −1 the whole automorphism SU(2)ext is a symmetry of the superfield constraints. It is
reduced to U(1)ext only at c 6= 0 .
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4.2 SU(2|1) invariant Lagrangians

One can construct the general Lagrangian and action for the SU(2|1) multiplet (1, 4, 3) as

S(G̃) =

∫

dtL = −
∫

dζ f(G̃) . (4.22)

We consider the invariant Lagrangians for the superfield G̃ satisfying the generalized constraints
(4.18) with c 6= 0. The action for the superfield G subject to the constraints (4.3) can be then
obtained by setting c = 0.

Any action with an arbitrary Lagrangian function f(G̃) is SU(2|1) invariant and provides
a deformation of the standard (1, 4, 3) models. Substituting the expression (4.19) for G̃ into
(4.22) and doing there the Berezin integration, we obtain the component off-shell Lagrangian

L = ẋ2g(x) + i
(

ψ̄iψ̇
i − ˙̄ψiψ

i
)

g(x) +
1

2
Bi

jB
j
i g(x)− Bi

j

(

1

2
δji ψ̄kψ

k − ψ̄iψ
j

)

g′(x)

−1

4
(ψ)2

(

ψ̄
)2
g′′(x)− [(1 + 2α) g(x) + αxg′(x)]µ ψ̄iψ

i − α2µ2x2g(x)− c g′(x) ψ̄iψ
i

− 2cαµ xg(x)− c2 g(x) , (4.23)

where g := f ′′ and primes mean differentiation in x , f ′ = ∂xf , etc. The parameter c produces
new additional potential-type terms in the Lagrangian.

The ǫ , ǭ transformation law of (4.19) ,

δG̃ = −
[

ǫiQ
i + ǭjQ̄j , G̃

]

, (4.24)

implies the following SU(2|1) transformation laws for the component fields:

δx = ǭkψ̄k e
− i

2
µt − ǫkψ

k e
i
2
µt, δψi = e−

i
2
µt
(

iǭiẋ+ αµ ǭix+ c ǭi + ǭkBi
k

)

,

δBi
j = − 2i

[

ǫjψ̇
i e

i
2
µt + ǭi ˙̄ψj e

− i
2
µt − 1

2
δij

(

ǫkψ̇
k e

i
2
µt + ǭk ˙̄ψk e

− i
2
µt
)

]

− (1 + 2α)µ

[

ǭiψ̄j e
− i

2
µt − ǫjψ

i e
i
2
µt − 1

2
δij

(

ǭkψ̄k e
− i

2
µt − ǫkψ

k e
i
2
µt
)

]

. (4.25)

We can simplify the Lagrangian (4.23) by passing to the new bosonic field y(x) with the
free kinetic term. From the equality

ẋ2g(x) =
1

2
ẏ2, (4.26)

we find the equation

y′(x) =
√

2g(x) , y′(x) =
1

x′(y)
(4.27)

and define

χi = ψiy′(x), B̃i
j =

1

2
Bi

j y
′(x), V (y) =

x(y)

x′(y)
. (4.28)
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Solving last of eqs. (4.28) as

x(y) = exp
{

∫ y dỹ

V (ỹ)

}

, (4.29)

we can cast the Lagrangian (4.23) in the form

L =
ẏ2

2
+
i

2

(

χ̄iχ̇
i − ˙̄χiχ

i
)

+ B̃i
jB̃

j
i −

V ′(y)− 1

V (y)
B̃j

i

(

δijχ̄kχ
k − 2χ̄jχ

i
)

− V ′′(y)V (y) + [2V ′(y)− 3] [V ′(y)− 1]

4V 2(y)
(χ)2 (χ̄ )2

− ∂y

[

αµV (y) + c V (y) exp

{

−
∫ y dỹ

V (ỹ)

}]

χ̄iχ
i − µ

2
χ̄iχ

i

− 1

2

[

αµV (y) + c V (y) exp

{

−
∫ y dỹ

V (ỹ)

}]2

. (4.30)

Here, V (y) can be regarded as an arbitrary function due to the arbitrariness of g(x) in (4.27).
Thus we have finally obtained the SU(2|1) Lagrangian involving an arbitrary function and
extended by additional terms which depend on the parameter c . In the new representation,
the supersymmetry transformations acquire the form

δy = ǭkχ̄k e
− i

2
µt − ǫk χ

ke
i
2
µt,

δχi = e−
i
2
µt

[

iǭiẏ + αµ ǭiV (y) + c ǭiV (y) exp

{

−
∫ y dỹ

V (ỹ)

}

+ 2ǭkB̃i
k

+χi
(

ǭkχ̄k − ǫkχ
k eiµt

) V ′(y)− 1

V (y)

]

,

δB̃i
j = − i

[

ǫjχ̇
i e

i
2
µt + ǭi ˙̄χj e

− i
2
µt − 1

2
δij

(

ǫkχ̇
k e

i
2
µt + ǭk ˙̄χk e

− i
2
µt
)

]

− µ

2
(1 + 2α)

[

ǭiχ̄j e
− i

2
µt − ǫjχ

i e
i
2
µt − 1

2
δij

(

ǭkχ̄k e
− i

2
µt − ǫkχ

k e
i
2
µt
)

]

+ B̃i
j

(

ǭkχ̄k e
− i

2
µt − ǫkχ

k e
i
2
µt
) V ′(y)− 1

V (y)

+ iẏ

[

ǫjχ
i e

i
2
µt + ǭiχ̄j e

− i
2
µt − 1

2
δij

(

ǫkχ
k e

i
2
µt + ǭkχ̄k e

− i
2
µt
)

]

V ′(y)− 1

V (y)
. (4.31)

In the particular case c = 0, the models described by these transformations and the Lagrangian
(4.30) correspond to the off-shell form of “weak supersymmetry” models [7].

4.3 Superconformal mechanics with c = 0

The superconformal (1, 4, 3) action with c = 0 can be written in the superfield formulation as

S(α)
sc (G) = −

∫

dζ f (α)
sc (G) , (4.32)

where the corresponding superfield function f(G) is given by

f (α)
sc (G) =

{

1
8(α+1)

G− 1

α for α 6= −1, 0 ,
1
8
G lnG for α = −1 .

⇒ g(x) =
x−

1

α
−2

8α2
. (4.33)
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Using (4.8) and (3.32), one can check that the action (4.32) is indeed invariant with respect to
the superconformal group D (2, 1;α) .

We can consider few special cases, e.g., α = −1 , α = −1/2 . As we will see in the next
subsection, in the case α = −1 the action (4.32) can be generalized to incorporate the non-zero
parameter c defined in (4.18). The case α = −1/2 corresponds to the free action. We cannot
treat the α = 0 case as a particular case of the SU(2|1) models under consideration since we
defined the SU(2|1) superspace for α 6= 0, while passing to α = 0 amounts to contraction of the
original SU(2|1) supergroup into the supergroup with the flat algebra (3.21). Nevertheless, as
we will see soon, the α = 0 superconformal action can still be constructed within the properly
modified superfield approach based on the contracted supergroup.

Doing θ-integral in the superfield action (4.32) and making the redefinition (3.17), we cal-
culate the superconformal Lagrangian as8

L(α)
sc = ẋ2g(x) + i

(

ψ̄iψ̇
i − ˙̄ψiψ

i
)

g(x) +
1

2
Bi

jB
j
i g(x)− Bi

j

(

1

2
δji ψ̄kψ

k − ψ̄iψ
j

)

g′(x)

− 1

4
(ψ)2

(

ψ̄
)2
g′′(x)− α2µ2x2g(x) . (4.34)

We observe that it depends only on µ2, not on µ. Taking advantage of the redefinitions just
mentioned, one can conveniently rewrite the transformations (4.25) as

δx = ǭkψ̄k e
− i

2
µt − ǫkψ

k e
i
2
µt, δψi = e−

i
2
µt
(

iǭiẋ+ αµ ǭix+ ǭkBi
k

)

,

δBi
j = − 2i

[

ǫjψ̇
i e

i
2
µt + ǭi ˙̄ψj e

− i
2
µt − 1

2
δij

(

ǫkψ̇
k e

i
2
µt + ǭk ˙̄ψk e

− i
2
µt
)

]

− (1 + 2α)µ

[

ǭiψ̄j e
− i

2
µt − ǫjψ

i e
i
2
µt − 1

2
δij

(

ǭkψ̄k e
− i

2
µt − ǫkψ

k e
i
2
µt
)

]

. (4.35)

The Lagrangian (4.34) is invariant under the second SU(2|1) transformations with the param-
eters ε, ε̄,

δx = ε̄kψ̄k e
i
2
µt − εkψ

k e−
i
2
µt, δψi = e

i
2
µt
(

iε̄iẋ− αµ ε̄ix+ ε̄kBi
k

)

,

δBi
j = − 2i

[

εjψ̇
i e−

i
2
µt + ε̄i ˙̄ψj e

i
2
µt − 1

2
δij

(

εkψ̇
k e−

i
2
µt + ε̄k ˙̄ψk e

i
2
µt
)

]

+ (1 + 2α)µ

[

ε̄iψ̄j e
i
2
µt − εjψ

i e−
i
2
µt − 1

2
δij

(

ε̄kψ̄k e
i
2
µt − εkψ

k e−
i
2
µt
)

]

, (4.36)

which correspond to the supercharges (4.6). We see that (4.35) and (4.36) are related by the
replacement µ → −µ in accord with the structure of D(2, 1;α) as the closure of these two
su(2|1) subalgebras.

The parabolic transformations of the (1, 4, 3) component fields can be obtained from the
trigonometric transformations (4.35), (4.36) in two steps. First, one passes to the new pair
{ǫ′, ǭ′}, {ε′, ε̄′} of infinitesimal parameters with opposite dimensions by redefining the old pa-
rameters as

ǫi =
1

2
ǫ′i +

i

µ
ε′i , εi =

1

2
ǫ′i −

i

µ
ε′i , and c.c.. (4.37)

8The term ∼ ψ̄ψ vanishes because of the identity
(

− 1

α
− 2

)

g(x) = xg′(x) for (4.33).
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This redefinition just corresponds to passing to the original basis for theD(2, 1;α) supercharges,
in which the super Poincaré supercharges and those of the superconformal boosts have the op-
posite dimensions. Only after that we can send µ→ 0 and obtain the parabolic transformations.
This procedure is universal and can be performed for the transformations of superfields, compo-
nent fields and superspace coordinates, regardless of the type of the realization of D(2, 1;α). In
this way one can, e.g., deduce the parabolic transformations of the integration measure (2.10),
which becomes the standard flat measure dt d2θ d2θ̄ in the limit µ = 0.

Using (4.26) – (4.28), we can calculate the function V (y) corresponding to (4.33):

V (y) = − y

2α
, V ′(y) = − 1

2α
,

V ′(y)− 1

V (y)
=

1 + 2α

y
. (4.38)

As a result, we obtain the superconformal Lagrangian in the form

L(α)
sc =

ẏ2

2
+
i

2

(

χ̄iχ̇
i − ˙̄χiχ

i
)

+ B̃i
jB̃

j
i −

1 + 2α

y
B̃j

i

(

δijχ̄kχ
k − 2χ̄jχ

i
)

− (1 + 3α) (1 + 2α)

2y2
(χ)2 (χ̄ )2 − µ2

8
y2. (4.39)

It is invariant (modulo a total derivative) under the following SU(2|1) odd transformations

δy = ǭkχ̄k e
− i

2
µt − ǫkχ

k e
i
2
µt,

δχi = e−
i
2
µt

[

iǭiẏ − µ

2
ǭiy + 2 ǭkB̃i

k + χi
(

ǭkχ̄k − ǫkχ
k eiµt

) 1 + 2α

y

]

,

δB̃i
j = − i

[

ǫjχ̇
i e

i
2
µt + ǭi ˙̄χj e

− i
2
µt − 1

2
δij

(

ǫkχ̇
k e

i
2
µt + ǭk ˙̄χk e

− i
2
µt
)

]

− µ

2
(1 + 2α)

[

ǭiχ̄j e
− i

2
µt − ǫjχ

i e
i
2
µt − 1

2
δij

(

ǭkχ̄k e
− i

2
µt − ǫkχ

k e
i
2
µt
)

]

+ B̃i
j

(

ǭkχ̄k e
− i

2
µt − ǫkχ

k e
i
2
µt
) 1 + 2α

y

+ iẏ

[

ǫjχ
i e

i
2
µt + ǭiχ̄j e

− i
2
µt − 1

2
δij

(

ǫkχ
k e

i
2
µt + ǭkχ̄k e

− i
2
µt
)

]

1 + 2α

y
. (4.40)

Changing µ in these transformations as µ → −µ, one obtains the transformations associated
with the extra generators S(µ) = Q(−µ). Since the Lagrangian (4.39) depends only on µ2 like
(4.34), it is automatically invariant under these Si transformations and, hence, under the full
D(2, 1;α).

Thus in the present case we deal with the superconformal mechanics corresponding to the
trigonometric transformations [14]. Another type of superconformal mechanics is that associ-
ated with the parabolic transformations, and its superfield description is based on the standard
N = 4, d = 1 superspace. The only difference is that the trigonometric type action (4.39) has
an additional oscillator term. Thus by sending µ → 0, the parabolic type of superconformal
mechanics can be restored.

The property that the component superconformal trigonometric actions are even functions
of the parameter µ can be established already at the superfield level. One should pass to the

SU(2|1) superspace basis {t, θ̃j , ¯̃θi}, in which the property Si(µ) = Qi(−µ) is valid and the
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integration measure is defined by (3.43), and express the superfield G through G0 according to
eqs. (4.10) - (4.12):

S(α)
sc (G) = −

∫

dt d2θ̃ d2 ¯̃θ
(

1 + µ ¯̃θkθ̃k

)

G− 1

α

= −
∫

dt d2θ̃ d2
¯̃
θ

[

1 +
1

4

(

α− 1 +
2β

α

)

µ2 (θ̃)2
( ¯̃
θ
)2
]

(G0)
− 1

α , α 6= −1, 0 (4.41)

and

S(α=−1)
sc (G) = −

∫

dt d2θ̃ d2 ¯̃θ
(

1 + µ ¯̃θkθ̃k

)

G lnG

= −
∫

dt d2θ̃ d2
¯̃
θ
{

[

1− 1

2
(1 + β)µ2(θ̃)2

( ¯̃
θ
)2
]

G0 lnG0

− µ2

4
(1 + 2β) (θ̃)2

( ¯̃
θ
)2
G0

}

, (4.42)

where one should take into account that
∫

dt d2θ̃ d2 ¯̃θ
(

µ ¯̃θkθ̃k G0

)

= 0 .

All terms with the manifest θs in (4.41), (4.42), equally as the superfield G0, depend only on
µ2. Also, it is easy to show that all β-dependent terms in these actions are canceled among
themselves. For any other trigonometric superconformal action treated below (e.g, in the
α = −1, c 6= 0 case), it is possible to show in a similar way that, in the appropriate superfield
formulation, they depend only on µ2 like in the component field formulations.

4.4 The model with α = −1, c 6= 0

Let us consider the case of c 6= 0 for which the superconformal invariance requires that α = −1
(m = µ). The corresponding supergroup is D (2, 1;α=− 1) = PSU(1, 1|2)⋊ SU(2)ext, but the
constraints (4.18) are covariant only with respect to PSU(1, 1|2)⋊ U(1)ext.

The corresponding superfield action is

S(α=−1)
sc (G̃) = −

∫

dζ G̃ ln G̃ . (4.43)

Starting from the general SU(2|1) invariant component Lagrangian (4.23) with c 6= 0 and
substituting there f(G̃) → G̃ ln G̃, we obtain, up to an additive constant, the following c 6=
0 , α = −1 generalization of the superconformal Lagrangian (4.34)

L(α=−1, c)
sc =

ẋ2

x
+
i

x

(

ψ̄iψ̇
i − ˙̄ψiψ

i
)

+
Bi

jB
j
i

2x
+
Bi

j

x2

(

1

2
δji ψ̄kψ

k − ψ̄iψ
j

)

− 1

2x3
(ψ)2

(

ψ̄
)2 − µ2x+

c ψ̄iψ
i

x2
− c2

x
. (4.44)

Here, the new term∼ ψ̄ψ is responsible for reducing superconformal symmetry to PSU(1, 1|2)⋊
U(1). This action is invariant under the supersymmetry transformations, with δψi being a
generalization of the relevant transformations in (4.35), (4.36):

δψi = e−
i
2
µt
(

iǭiẋ− µ ǭix+ ǭkBi
k + c ǭix

)

+ e
i
2
µt
(

iε̄iẋ+ µ ε̄ix+ ε̄kBi
k + c ε̄ix

)

. (4.45)
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Transformations of the bosonic fields are the same as in (4.35), (4.36).
Passing to the action with free kinetic terms, we find the relevant function V (y) to be

V (y) =
y

2
, V ′(y) =

1

2
,

V ′(y)− 1

V (y)
= −1

y
. (4.46)

In accordance with (4.30), we also should take into account additional terms involving c . Thus
the superconformal Lagrangian (4.39) is generalized to this special case as

L(α=−1, c)
sc =

ẏ2

2
+
i

2

(

χ̄iχ̇
i − ˙̄χiχ

i
)

+ B̃i
jB̃

j
i +

B̃j
i

y

(

δijχ̄kχ
k − 2χ̄jχ

i
)

− 1

y2
(χ)2 (χ̄ )2

+
c

2y2
χ̄iχ

i − µ2y2

8
− c2

8y2
. (4.47)

The relevant on-shell Lagrangian,

L(α=−1, c)
sc =

ẏ2

2
+
i

2

(

χ̄iχ̇
i − ˙̄χiχ

i
)

− 1

4y2
(χ)2 (χ̄ )2 +

c

2y2
χ̄iχ

i − µ2y2

8
− c2

8y2
, (4.48)

as a superconformal Lagrangian was previously found in [17]9. The SU(2|1) superspace ap-
proach allowed us to find the off-shell superfield form of (4.48).

4.5 The α = 0 model

Inspecting the Lagrangian (4.34), we observe that the limit α → −0 is divergent and the

opposite limit α → +0 yields L(α=0)
sc = 0. Nevertheless, we can unambiguously define this limit

for the Lagrangian (4.34) by introducing an inhomogeneity parameter ρ [14].
The limit α → 0 can be obtained, if we redefine the Lagrangian (4.34) by shifting the field

x as

x→ x+
ρ

α
. (4.49)

The homogeneous Lagrangian (4.34) is rewritten as

L(α, ρ)
sc =

α
1

α

8
(αx+ ρ)−

1

α
−2

[

ẋ2 + i
(

ψ̄iψ̇
i − ˙̄ψiψ

i
)

+
1

2
Bi

jB
j
i

]

+
α

1

α (1 + 2α)

8
Bi

j

(

1

2
δji ψ̄kψ

k − ψ̄iψ
j

)

(αx+ ρ)−
1

α
−3

− α
1

α (1 + 2α) (1 + 3α)

32
(ψ)2

(

ψ̄
)2

(αx+ ρ)−
1

α
−4 − α

1

αµ2

8
(αx+ ρ)−

1

α . (4.50)

Detaching the divergent factor ∼ (α
ρ
)

1

α and sending α → 0 in the remainder, we obtain the

Lagrangian L(α=0, ρ)
sc as

L(α=0, ρ)
sc = e−

x
ρ

[

ẋ2 + i
(

ψ̄iψ̇
i − ˙̄ψiψ

i
)

+
1

2
Bi

jB
j
i

]

+
Bi

j

ρ

(

1

2
δji ψ̄kψ

k − ψ̄iψ
j

)

e−
x
ρ

− 1

4ρ2
(ψ)2

(

ψ̄
)2
e−

x
ρ − µ2ρ2e−

x
ρ . (4.51)

9One needs to perform a redefinition of fields in order to show the coincidence of these two Lagrangians.
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Following the same procedure as in (4.26) – (4.28), we can obtain the Lagrangian which coincides
with (4.39) at α = 0 [14]. For ensuring the superconformal invariance in this case, one needs
to extend the transformations (4.35), (4.36) for α = 0 by the inhomogeneous parts

δ(ρ)ψ
i = ρµ

(

ǭie−
i
2
µt − ε̄ie

i
2
µt
)

, δ(ρ)x = δ(ρ)B
i
k = 0 . (4.52)

This modification entails the appearance of inhomogeneous pieces in the conformal transfor-
mations of x,

Tx = e−iµt (iẋ+ ρµ) , T̄ x = eiµt (iẋ− ρµ) . (4.53)

The standard conformal so(2, 1) generators defined in (3.5), (3.8) act on x as

Ĥx =
i

2
(1 + cosµt ) ẋ− i

2
ρµ sinµt ,

K̂x =
2i

µ2
(1− cosµt ) ẋ+

2i

µ
ρ sin µt ,

D̂x =
i

µ
sinµt ẋ+ iρ cosµt . (4.54)

The superconformal superfield action (4.32) is not defined at α = 0. Nevertheless, the
superfield description of (4.51) can be given in the framework of the supercoset (3.24) associated
with the α = 0 superalgebra (3.21). According to (4.4), the superfield G is written as

G = x+
ẍ

4
(θ)2

(

θ̄
)2 − iθ̄kθk

(

θi ψ̇
i e

i
2
µt + θ̄j ˙̄ψj e

− i
2
µt
)

+
(

1 +
µ

2
θ̄kθk

)(

θi ψ
i e

i
2
µt − θ̄j ψ̄j e

− i
2
µt
)

+ θ̄jθiB
i
j (4.55)

and satisfies the standard “flat” (1, 4, 3) constraints

εljD̄l D̄j G = εljDl Dj G = 0 ,
[

Di, D̄i

]

G = 0 , (4.56)

where the covariant derivatives are10

Di = e−
i
2
µt

(

∂

∂θi
− iθ̄i∂t − µ θ̄iF̃

)

, D̄j = e
i
2
µt

(

− ∂

∂θ̄j
+ iθj∂t + µ θjF̃

)

, (4.57)

D(t) = ∂t , {Di, D̄j} = 2δij

(

i∂t + µF̃
)

. (4.58)

Then the component Lagrangian (4.51) is reproduced from the superfield action

S(α=0, ρ)
sc (G) =

∫

dtL(α=0, ρ)
sc = −ρ2

∫

dt d2θ d2θ̄ e−
G
ρ
−µ θ̄kθk . (4.59)

The “passive” superfield infinitesimal transformation of G involves only the inhomogeneous
piece

δ(ρ)G = −ρµ
(

ǭkθk − ǫkθ̄
k
)

+ ρµ
(

1 + µ θ̄kθk
) (

ε̄kθke
iµt − εkθ̄

ke−iµt
)

, (4.60)

10Though the superfield G has no external U(1) charge and the generator F̃ yields zero on G, it is non-
vanishing when acting on the covariant derivative itself. Nevertheless, it is direct to check that in the α = 0
constraints (4.56) such contributions are canceled against terms coming from the phase factors in the definition
(4.57).
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since its standard homogeneous part (4.8) vanishes at α = 0.
Note that the superfield G at α = 0, though being defined in fact on the flat N = 4

superspace, still possesses an unusual inhomogeneous transformation law (4.60) under the N =
4, d = 1 Poincaré supersymmetry to which, at α = 0, the ǫ, ǭ transformations are reduced.
We can reformulate this model in terms of the superfield u having the standard homogeneous
transformation law under the N = 4, d = 1 Poincaré supersymmetry

u = G+ ρµ θ̄kθk , δǫu = 0 , (4.61)

εljD̄l D̄j u = εljDl Dj u = 0 ,
[

Di, D̄i

]

u = −4ρµ . (4.62)

The inhomogeneity of the full odd superconformal transformation law of u is retained only in
the part ∼ εi, ε̄

k associated with the generators Si, S̄k:

δ(ρ)u = 2ρµ
(

1− µ θ̄kθk
) (

ε̄kθke
iµt − εkθ̄

ke−iµt
)

. (4.63)

The action (4.59) is rewritten in the form in which it does not involve explicit θ:

S(α=0, ρ)
sc (u) = −ρ2

∫

dt d2θ d2θ̄ e−
u
ρ . (4.64)

We also note that the µ dependence in the solution (4.55) is fake because it can be re-

moved by the inverse phase transformation of fermionic fields as ψi → ψie−
i
2
µt. Then the

whole µ dependence in the component actions (4.50), (4.51) is generated by the θ dependent
term in (4.59) or the θ-dependent additional term in u defined in (4.61) (if one prefers the
u-representation (4.64) for the superconformal action). The definition of the fermionic fields as
in (4.55) is convenient since it ensures the absence of the fermionic “mass terms” ∼ µψiψ̄i in
(4.50), (4.51). Despite the fact that at α = 0 we deal with the standard flat N = 4 superfield u,
the superconformal transformations (4.63) still correspond to the trigonometric realization of
the conformal subgroup SO(2, 1), as well as of the full PSU(1, 1|2). The parabolic realization
is achieved by redefining the fermionic parameters as in (4.37) and then sending µ → 0 in the
resulting transformations, like in other cases.

As the final remark, we notice that the α = 0 analog of the superconformal action (4.43)
with c 6= 0 and α = −1 can be obtained [20] by considering the superfield action dual to (4.43):

S(α=0, ρ, c̃)
sc (G) =

∫

dt d2θ d2θ̄
[

−ρ2e−G
ρ
−µ θ̄kθk + c̃

(

θ̄1θ1 − θ̄2θ2
)

G
]

=

∫

dt d2θ d2θ̄
[

−ρ2e−u + c̃
(

θ̄1θ1 − θ̄2θ2
)

u
]

. (4.65)

It can be checked that the relevant component Lagrangian coincides with the off-shell La-
grangian (4.47), modulo the replacements of all SU(2) indices by the SU ′(2) indices (on which
the generators {F,C, C̄} act) and the substitution c→ c̃ .

5 The multiplet (2,4,2)

5.1 Chiral SU(2|1) superfields
In this Section, we will consider the multiplet (2, 4, 2), proceeding from the superspace (2.5).
Also, in [5] the multiplet (2, 4, 2) was generalized by exploiting the superspace coset (2.12).
Such a generalization will be addressed in the next Section.
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Employing the covariant derivatives (2.11), the standard form of the chiral and antichiral
conditions is as follows

(a) D̄iΦ = 0 , (b) DiΦ̄ = 0 . (5.1)

This implies the existence of the left and right chiral subspaces [4]:

(tL, θi), (tR, θ̄
i) , (5.2)

where

tL = t+ i θ̄kθk −
i

2
m (θ)2

(

θ̄
)2
, and c.c.. (5.3)

These coordinate sets are closed under the SU(2|1) transformations

δθi = ǫi + 2m ǭkθkθi , δtL = 2i ǭkθk , and c.c.. (5.4)

One can require that the complex superfield Φ with the minimal field contents (2, 4, 2)
possesses a fixed overall U(1) charge

F̃Φ = 2κΦ , Ĩ ik Φ = 0 . (5.5)

The general solution of (5.1) for an arbitrary real κ reads:

Φ
(

t, θ, θ̄
)

=
(

1 + 2m θ̄kθk
)−κ

ΦL(tL, θ ) , ΦL(tL, θ ) = z +
√
2 θiξ

i + (θ)2B , (ξi) = ξ̄i . (5.6)

The chiral superfield Φ transforms as

δΦ = 2κm
(

ǭiθi + ǫiθ̄
i
)

Φ , δΦL = 4κm ǭiθi ΦL . (5.7)

This transformation law implies the following off-shell SU(2|1) transformations of the compo-
nent fields in (5.6)

δz = −
√
2 ǫkξ

k, δξi =
√
2 ǭi (iż − 2κmz)−

√
2 ǫiB,

δB = −
√
2 ǭk

[

iξ̇k −
(

2κ− 1

2

)

mξk
]

. (5.8)

As in case of the multiplet (1, 4, 3), for analyzing the superconformal properties of the multi-
plet (2, 4, 2) it will be convenient to pass to the supercoset (3.22), in which the time-translation
generator is H ∈ so(2, 1). Imposing the constraints (5.1) with the covariant derivatives defined
in (3.33) and choosing κ = 0, we come to the left chiral subspace parametrized by the same
coordinates (tL, θi) as before, with the definition (5.3) being valid. It is straightforward to check
that this set of coordinates is closed under the superconformal transformations generated by
(3.27) and (3.29) only for α = −1 . The relevant coordinate transformations read

δθi = ǫi + 2µ ǭkθkθi + εie
−iµtL , δtL = 2i ǭkθk + 2i ε̄kθke

iµtL . (5.9)

This agrees with the observation that under the action of the generators C, C̄ (3.30) belonging to
the group SU ′(2) the constraints (5.1) are not covariant. Thus the chiral subspaces are closed,
and, respectively, the chirality constraints are covariant, only for the conformal supergroup
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D(2, 1;α= − 1) = PSU(1, 1|2) ⋊ U(1)ext. Note that the chiral superfields in the flat N = 4
superspace are also known to preserve the superconformal D(2, 1;α) covariance only for the
values α = −1, 0 [12, 13].

At α = −1 the overall U(1) charge operator F̃ drops out from the covariant derivatives
(3.33), so the only solution of (5.1) in this case, i.e. the solution consistent with the supercon-
formal covariance, corresponds to the choice κ = 0 in (5.6). As follows from (5.7), the Qi, Q̄k

transformations of ΦL at κ = 0 (i.e. those with ǫi, ǭ
i) do not involve any weight terms. Since in

the appropriate basis Si(µ) = Qi(−µ) , S̄i(µ) = Q̄i(−µ), the same should be true for the εi, ε̄
i

transformations, i.e.

δǫΦL = δεΦL = 0 . (5.10)

On the other hand, the measure of integration over the SU(2|1) superspace dζ is not super-
conformally invariant at any α (recall (3.32)), so it is impossible to construct a homogeneous
superconformally invariant action out of the superfield ΦL transforming as in (5.10).

One way to construct the superconformal action is to pass to its inhomogeneous version as
it was done for the α = 0 case of the multiplet (1, 4, 3) in Section 4.5. This will be performed in
Section 5.3. Another way which allows one to construct a more general class of superconformal
actions is to start from the embedding of SU(2|1) into a central-charge extension of PSU(1, 1|2),
i.e. the supergroup SU(1, 1|2) with the superalgebra given in Appendix A, eqs. (A.4) – (A.6).
The corresponding su(2|1) subalgebra is specified by the anticommutator

{Qi, Q̄j} = 2µI ij + 2δij (H− µZ1) , (5.11)

where the central charge generator Z1 commutes with all other generators. The natural modi-
fication of the supercoset (3.22) for α = −1 is as follows

SU(2|1)⋊ U(1)ext
SU(2)× U(1)int × U(1)ext

∼ {Qi, Q̄j ,H, Z1, F, I
i
j}

{I ij, Z1, F}
∼ {Qi, Q̄j ,H, Z1, I

i
j}

{I ij, Z1}
, (5.12)

where SU(2|1) in the numerator is defined through the Z1 extended anticommutation relation
(5.11) and we placed Z1 into the stability subgroup. Recall that the former internal generator
F becomes an outer automorphism generator at α = −1 and is completely split from the
remaining su(1, 1|2) generators.

An element of the coset (5.12) coincides with (3.25). However, due to the appearance
of the new generator Z1 in the stability subgroup and the modification of the basic SU(2|1)
anticommutator as in (5.11), the covariant spinor derivatives (3.33) at α = −1 should be
extended as

Di ⇒ Di
Z = Di + µ e−

i
2
µtθ̄iZ1 , D̄j ⇒ D̄Zj = D̄j − µe

i
2
µtθjZ1 . (5.13)

Now we can require that the superfield Φ has a non-zero charge with respect to Z1:

Z1Φ = bΦ . (5.14)

Then, imposing the chirality condition (5.1) with the modified covariant derivative (5.13), i.e.,

D̄ZjΦ =
(

D̄j − µe
i
2
µtθjZ1

)

Φ = 0 , (5.15)
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one obtains the solution

Φ
(

t, θ, θ̄
)

=
(

1 + 2µ θ̄kθk
)− b

2 ΦL(tL, θ ) , ΦL(tL, θ ) = z +
√
2 θiξ

ie
i
2
µtL + (θ)2BeiµtL , (5.16)

which looks as (5.6), with b = 2κ and the fields redefined as

ξi(t) → ξi(t)e
i
2
µt, B(t) → B(t)eiµt , and c.c.. (5.17)

To preserve this b 6= 0 chirality, the holomorphic chiral superfield ΦL should have the
following ǫ and ε transformation laws

δǫΦL = 2bµ ǭiθi ΦL , δεΦL = −2bµ ε̄iθi e
iµtL ΦL , (5.18)

or, in terms of the superfield Φ ,

δǫΦ = bµ
(

ǭiθi + ǫiθ̄
i
)

Φ , δεΦ = −bµ
(

3ε̄iθi e
iµt − εiθ̄

i e−iµt
) (

1− µ θ̄kθk
)

Φ . (5.19)

Under the odd transformations (5.9), (5.18), the component fields in (5.16) are transformed as:

δz = −
√
2 ǫkξ

ke
i
2
µt −

√
2 εkξ

ke−
i
2
µt,

δξi =
√
2 ǭi (iż − bµz) e−

i
2
µt −

√
2 ǫiBe

i
2
µt +

√
2 ε̄i (iż + bµz) e

i
2
µt −

√
2 εiBe−

i
2
µt,

δB = −
√
2 ǭk

[

iξ̇k −
(

b− 1

2

)

µ ξk
]

e−
i
2
µt −

√
2 ε̄k

[

iξ̇k +

(

b− 1

2

)

µ ξk
]

e
i
2
µt. (5.20)

To avoid a possible confusion, let us point out that, leaving aside the issues of superconformal
covariance, the SU(2|1) chirality based on the coset (2.5) and the covariant derivatives defined
in (2.11) (eqs. (5.1) - (5.8)) is equivalent to that based on the coset (5.12) and the covariant
derivatives (5.13). Indeed, using the relation H = H − µF , one can rewrite (5.11) as

{Qi, Q̄j} = 2µI ij + 2δij [H − µ (F + Z1)] ,

which has the same form as the anticommutator in (2.4), with m = µ and the substitution F →
F+Z1. The generator F+Z1 cannot be distinguished from F since Z1 commutes with anything
and does not act on the superspace coordinates. Then one can start from the supercoset (2.5),
make the shift F → F + Z1, and impose, instead of (5.5), the condition (F̃ + Z1)Φ = 2κΦ
which can be realized either with F̃Φ = 2κΦ, Z1Φ = 0 or with F̃Φ = 0, Z1Φ = 2κΦ, b ≡ 2κ.
The relevant covariant derivatives (2.11) and (5.13), equally as the solutions (5.6) and (5.16),
have the same form for both options. The difference between F and Z1 is displayed at the
full superconformal level: In the basis (H, F ) the generator F entirely splits from all other
superconformal generators, while there is no way to make Z1 not to appear on the right-hand
sides of the relevant anticommutators (see eqs. (A.4) – (A.6) for the case Z2 = Z3 = 0).

5.2 Superconformal Lagrangian

The general SU(2|1) invariant action of the chiral superfields is defined as

S(Φ) =

∫

dt L =
1

4

∫

dζ f
(

Φ, Φ̄
)

, (5.21)
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where f
(

Φ, Φ̄
)

is a Kähler potential. The corresponding component Lagrangian reads

L = g ˙̄zż +
i

2
g
(

ξ̄iξ̇
i − ˙̄ξiξ

i
)

− i

2
ξ̄kξ

k ( ˙̄zgz̄ − żgz)−
1

2
(ξ)2 B̄gz −

1

2

(

ξ̄
)2
Bgz̄

+ gB̄B +
1

4
(ξ)2

(

ξ̄
)2
gzz̄ + ibµ ( ˙̄zz − żz̄) g − i

2
µ ( ˙̄zfz̄ − żfz)

−µ ξ̄kξ
k U − µ2V , (5.22)

where

V =
b

2
(z̄∂z̄ + z∂z) f − b2

4
(z̄∂z̄ + z∂z)

2 f ,

U =
b

2
(z̄∂z̄ + z∂z) g + (b− 1) g +

g

2
. (5.23)

Here, the lower case indices denote the differentiation in z, z̄ , fzz̄ = ∂z∂z̄f , and g := fzz̄ is the
metric on a Kähler manifold. Performing the redefinition (5.17) in (5.22) and choosing b = 2κ,
one can see that this Lagrangian coincides with the chiral SU(2|1) Lagrangian given in [4] on
the basis of the supercoset (2.5), in accord with the equivalency of two definitions of chirality,
as was discussed in the end of the previous subsection.

According to (5.19), in order to render the action (5.21) superconformal, one needs to define
the Kähler potential as

f (b)
sc (Φ, Φ̄) =

(

ΦΦ̄
)

1

2b . (5.24)

Then the Lagrangian

L(b)
sc =

(zz̄)
1

2b
−1

4b2

[

˙̄zż +
i

2

(

ξ̄iξ̇
i − ˙̄ξiξ

i
)

+ B̄B

]

+
(2b− 1)2

64b4
(zz̄)

1

2b
−2 (ξ)2

(

ξ̄
)2

+
2b− 1

8b3
(zz̄)

1

2b
−2

[

i

2
ξ̄kξ

k ( ˙̄zz − żz̄) +
1

2
(ξ)2 B̄z̄ +

1

2

(

ξ̄
)2
Bz

]

− µ2

4
(zz̄)

1

2b (5.25)

is invariant under the superconformal transformations (5.20).
The simplest case of (5.25) corresponding to the choice b = 1/2 and yielding the free action,

L(b=1/2)
sc = ˙̄zż +

i

2

(

ξ̄iξ̇
i − ˙̄ξiξ

i
)

+ B̄B − µ2

4
zz̄ , (5.26)

was previously worked out in [4]11.
Thus we observe that the superconformal sigma-model type action for the multiplet (2, 4, 2)

exists only for the non-zero central charge Z1, i.e. the relevant invariance supergroup is
SU(1, 1|2), not its quotient PSU(1, 1|2). It is worth noting that the action (5.21) with the

11These actions become identical after choosing κ = 1/4 and making the redefinition (5.17) in the action of
ref. [4], which eliminates there the term ∼ ξ̄ξ. Note that the su(2|2) symmetry found in this problem in [4]
appears only at the quantum level and is not related to the superconformal symmetry SU(1, 1|2)⋊U(1) which
is present already at the classical level.
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superfield Lagrangian (5.24), at any b 6= 0 , is in fact related to the free bilinear action through
the field redefinition

(ΦL)
1

2b = Φ̂L , S(b)
sc (Φ) = S(b=1/2)

sc (Φ̂) =
1

4

∫

dζ
(

1 + 2µ θ̄kθk
)− 1

2 Φ̂L
¯̂
ΦR . (5.27)

In other words, without loss of generality, we can always choose b = 1/2 and deal with the
Lagrangian (5.26). The same equivalence to the free actions is valid also for other types of the
superconformal sigma-model term of the multiplet (2, 4, 2).

5.3 Conformal superpotential

One can define the chiral superspace measure dζL which is invariant under the superconformal
transformations (5.9):

dζL = dtL d
2θ e−iµtL , δǫ (dζL) = δε (dζL) = 0 . (5.28)

Taking into account the explicit form of the superconformal transformations with b 6= 0, eqs.
(5.18), the only superpotential term respecting superconformal invariance is:

Spot
sc (Φ) = ν

∫

dζL ln ΦL + c.c.. (5.29)

The corresponding superconformal Lagrangian reads

Lpot
sc = ν

(

2B

z
+
ξiξ

i

z2

)

+ c.c. . (5.30)

After summing it with (5.26) and eliminating the auxiliary fields, the on-shell superconformal
trigonometric Lagrangian acquires the standard conformal potential

− 4
|ν|2
zz̄

, (5.31)

in addition to the oscillator term −µ2

4
zz̄ . Thus the non-trivial dynamics in the Lagrangian

of the multiplet (2, 4, 2) invariant under the trigonometric realization of the superconformal
group arises solely due to the superpotential term (5.29). For the parabolic realization, the
same statement can be traced back to [21].

5.4 Inhomogeneous superconformal action at b = 0

As was already mentioned, at b = 0 (or, equivalently, at κ = 0) we encounter difficulties, when
trying to construct the superconformal action. It is still possible to define the inhomogeneous
superconformal action with b = 0 by resorting to the same procedure as in Section 4.5. Indeed,
the parameter b can be identified with a central charge of su(1, 1|2), therefore one can identify
−b with the scaling dimension λD of the chiral multiplet [14, 22, 23]. Making the redefinition

z → z +
ρ

b
, z̄ → z̄ +

ρ

b
, (5.32)
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detaching the singular factors and, finally, sending b → 0, we obtain the Lagrangian

L(b=0, ρ)
sc = e

z+z̄
2ρ

[

˙̄zż +
i

2

(

ξ̄iξ̇
i − ˙̄ξiξ

i
)

+ B̄B

]

− i

4ρ
ξ̄kξk ( ˙̄z − ż) e

z+z̄
2ρ

− 1

4ρ

[

(ξ)2 B̄ +
(

ξ̄
)2
B
]

e
z+z̄
2ρ +

1

16ρ2
e

z+z̄
2ρ (ξ)2

(

ξ̄
)2 − µ2ρ2 e

z+z̄
2ρ . (5.33)

It can be derived from the following SU(2|1) superfield action

S(b=0, ρ)
sc (Φ) =

∫

dt L(b=0, ρ)
sc = ρ2

∫

dζ
(

1 + 2µ θ̄kθk
)− 1

2 e
ΦL+Φ̄R

2ρ . (5.34)

The relevant supersymmetric transformations (5.20) with b = 0 should be extended by the
inhomogeneous pieces

δ(ρ)ξ
i = −

√
2 ρµ

(

ǭie−
i
2
µt − ε̄ie

i
2
µt
)

, δ(ρ)z = δ(ρ)B = 0 . (5.35)

This is equivalent to saying that, at b = 0, the “passive” variation of the holomorphic chiral
superfield ΦL under both supersymmetries involves only the inhomogeneous parts

δ(ρ)ΦL = 2ρµ
(

ǭkθk − ε̄kθke
iµtL

)

. (5.36)

It can be obtained from the transformation (5.18), where ΦL is shifted as

ΦL → ΦL +
ρ

b
(5.37)

in conjunction with the shift (5.32). Then we can write the invariant superpotential term as

S ′pot
sc (Φ) = ν

∫

dζLΦL + c.c. ⇒ L′pot
sc = 2νB + 2ν̄B̄. (5.38)

The action (5.34), like its b 6= 0 counterpart, can be reduced to the bilinear action by means of
the redefinition

e
ΦL
2ρ ∼ Φ̂L , ΦL ∼ ln Φ̂L .

Then the full b = 0 superconformal superfield action amounts to a sum of the free kinetic action
and the logarithmic superconformal potential.

Note that the action (5.34) can be rewritten as

S(b=0, ρ)
sc (Φ) = ρ2

∫

dζ e
Φ+Φ̄

2ρ , (5.39)

where

Φ
(

t, θ, θ̄
)

= ΦL(tL, θ )− ρµ θ̄kθk
(

1− µ θ̄iθi
)

, (5.40)

and

δΦ = ρµ
(

ǭiθi + ǫiθ̄
i
)

− ρµ
(

1− µ θ̄kθk
) (

3ε̄kθke
iµt − εkθ̄

ke−iµt
)

. (5.41)

The superfield (5.40) can be regarded as a solution of the chirality condition (5.1a) with the
covariant derivative (5.13), in which the central charge Z1 acts on Φ as the pure shift

Z1Φ = ρ . (5.42)

In this way, the parameter ρ 6= 0 activates a non-vanishing central charge in su(1, 1|2) . Thus
the superconformal sigma-model type action at b = 0 exists only on account of a non-zero
central charge in su(1, 1|2) , like in the b 6= 0 case.
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5.5 The limit µ = 0

As an instructive example, we consider the parabolic chiral model obtained in the limit µ = 0.
In this limit, the superconformally invariant action of the chiral multiplet becomes

S(µ=0)
sc (Φ) =

1

4

∫

dt d2θ d2θ̄
(

ΦΦ̄
)

1

2b . (5.43)

The chiral superfield Φ transforms under the superconformal charges as

δΦ = −4ib ε̄′iθi Φ , (5.44)

while transforming as a scalar under the d = 1 Poincaré supersymmetry with the parameters
ǫ′i, ǭ′i. The whole amount of superconformal transformations is derived from the trigonometric
ones according to the procedure (4.37). The parameter b is still interpreted as the central charge
of su(1, 1|2). Then the superconformal component off-shell Lagrangian

L(µ=0)
sc =

(zz̄)
1

2b
−1

4b2

[

˙̄zż +
i

2

(

ξ̄iξ̇
i − ˙̄ξiξ

i
)

+ B̄B

]

+
(2b− 1)2

64b4
(zz̄)

1

2b
−2 (ξ)2

(

ξ̄
)2

+
2b− 1

8b3
(zz̄)

1

2b
−2

[

i

2
ξ̄kξ

k ( ˙̄zz − żz̄) +
1

2
(ξ)2 B̄z̄ +

1

2

(

ξ̄
)2
Bz

]

(5.45)

is invariant under both the Poincaré and the superconformal N = 4, d = 1 transformations

δz = −
√
2 ǫ′kξ

k +
√
2 t ε′kξ

k,

δξi =
√
2 i ǭ′iż −

√
2 ǫ′iB −

√
2 i ε̄′i (tż − 2bz) +

√
2 t ε′iB,

δB = −
√
2 i ǭ′kξ̇

k +
√
2 i ε̄′k

[

t ξ̇k − (2b− 1) ξk
]

. (5.46)

The inhomogeneous superconformal Lagrangian at b = 0 reads

L(µ=0, b=0, ρ)
sc = e

z+z̄
2ρ

[

˙̄zż +
i

2

(

ξ̄iξ̇
i − ˙̄ξiξ

i
)

+ B̄B

]

− i

4ρ
ξ̄kξk ( ˙̄z − ż) e

z+z̄
2ρ

− 1

4ρ

[

(ξ)2 B̄ +
(

ξ̄
)2
B
]

e
z+z̄
2ρ +

1

16ρ2
e

z+z̄
2ρ (ξ)2

(

ξ̄
)2
, (5.47)

and it can be deduced from the superfield action

S(µ=0, b=0, ρ)
sc (Φ) =

∫

dt L(µ=0, b=0, ρ)
sc = ρ2

∫

dt d2θ d2θ̄ e
Φ+Φ̄

2ρ . (5.48)

In the inhomogeneous case, the superconformal transformation of the superfield Φ involves only
the inhomogeneous piece

δ(ρ)Φ = −4iρ ε̄′kθk . (5.49)

Since the superpotential terms (5.30) and (5.38) do not depend on µ, their form is preserved
in the parabolic limit µ = 0. The only peculiarity is that the invariant chiral integration
measure (5.28) turns into the flat measure dtL d

2θ. Obviously, the kinetic superfield term
(5.48) is reduced to the free one after the appropriate holomorphic redefinition of Φ.
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6 Generalized chiral multiplet

6.1 Another type of chiral SU(2|1) superspace
In [5], there was defined a different kind of SU(2|1) chiral superfields. Let us consider the
general coset (5.12). The chiral condition (5.1) can be generalized as

(a) ¯̃Diϕ = 0 , (b) D̃iϕ̄ = 0 , (6.1)

where the spinor derivatives D̃i, ¯̃Di are the following linear combinations of the covariant deriva-
tives defined in (3.33):

¯̃Di = cosλ D̄i − sin λDi , D̃i = cosλDi + sin λ D̄i . (6.2)

One can treat such combinations as the result of particular rotation by an extra SU ′(2) group
with the generators {C, C̄, F}. In general, the SU ′(2) transformations break the covariance of
the constraints (6.1). The latter remain covariant only under the special combination of the
SU ′(2) generators,

F ′ = F cos 2λ+
1

2

(

C + C̄
)

sin 2λ . (6.3)

Thus the constraints (6.1) are covariant under the superconformal group D (2, 1;α) only
for α = −1, when it is reduced to the supergroup PSU(1, 1|2), and under the external auto-
morphism U(1) group with the generator F ′ (6.3). The Hamiltonian H is identified with the
whole internal U(1) generator of the non-extended subalgebra su(2|1) ⊂ psu(1, 1|2) for α = −1,
m = µ.

The conditions (6.1) amounts to the existence of the left and right chiral subspaces:

(t̂L, θ̂i),
(

t̂R,
¯̂
θi
)

, (6.4)

where

t̂L = t + i
¯̂
θkθ̂k , θ̂i =

(

cos λ θie
i
2
µt + sinλ θ̄ie

− i
2
µt
)(

1− µ

2
θ̄kθk

)

. (6.5)

As expected, the coordinate set (t̂L, θ̂i) is closed under the SU(2|1) transformations

δθ̂i = cosλ
(

ǫi e
i
2
µt̂L + µ ǭkθ̂k θ̂i e

− i
2
µt̂L

)

+ sin λ
(

ǭi e
− i

2
µt̂L + µ ǫkθ̂kθ̂i e

i
2
µt̂L

)

,

δt̂L = 2i cosλ ǭkθ̂k e
− i

2
µt̂L − 2i sinλ ǫkθ̂k e

i
2
µt̂L . (6.6)

The second SU(2|1) transformations

δθ̂i = cos λ
(

εi e
− i

2
µt̂L − µ ε̄kθ̂kθ̂i e

i
2
µt̂L

)

+ sin λ
(

ε̄i e
i
2
µt̂L − µ εkθ̂k θ̂i e

− i
2
µt̂L

)

,

δt̂L = 2i cosλ ε̄kθ̂k e
i
2
µt̂L − 2i sinλ εkθ̂k e

− i
2
µt̂L (6.7)

are generated by (3.29) for α = −1 and also leave the left chiral subspace invariant. The chiral
subspace (6.5) is not closed under the SU ′(2) transformations generated by {C, C̄, F}, except
those generated by the U(1) generator (6.3).
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Since at α = −1 the superconformal group admits the central extension, in what follows we
will assume that the α = −1 spinor covariant derivatives in the definition (6.2) are replaced by
the central-extended ones Di

Z , D̄Zi (5.13), i.e. in the chirality constraints (6.1) we will use

¯̃Di = cos λ D̄Zi − sin λDZi , D̃i = cos λDi
Z + sinλ D̄i

Z . (6.8)

Assuming that the central charge acts on the superfield as12

Z1ϕ = b cos 2λϕ , (6.9)

the solution of (6.1) is given by

ϕ
(

t, θ̂,
¯̂
θ
)

= e−bµ cos 2λ
¯̂
θk θ̂kϕL

(

t̂L, θ̂
)

, ϕL

(

t̂L, θ̂
)

= z +
√
2 θ̂kξ

k + (θ̂)2B . (6.10)

As we will see, the parameter |b| is associated with the norm of the triplet of central charges
like in the previous Section, since in the case under consideration the superalgebra psu(1, 1|2)
turns out to be extended by three constant central charges. This is consistent with the limit
cos 2λ = 1 in the generalized conditions (6.1).

The transformations of the superfield ϕ are given by

δǫϕ = bµ cos 2λ ǭie−
i
2
µt
[

cosλ θ̂i

(

1 +
µ

2
¯̂
θkθ̂k

)

− sinλ
¯̂
θi

(

1− µ

2
¯̂
θkθ̂k

)]

ϕ

+ bµ cos 2λ ǫie
i
2
µt
[

cos λ
¯̂
θi
(

1 +
µ

2
¯̂
θkθ̂k

)

+ sin λ θ̂i
(

1− µ

2
¯̂
θkθ̂k

)]

ϕ ,

δεϕ = bµ cos 2λ ε̄ie
i
2
µt
[

cosλ θ̂i

(

1− µ

2
¯̂
θkθ̂k

)

− sinλ
¯̂
θi

(

1 +
µ

2
¯̂
θkθ̂k

)]

ϕ

+ bµ cos 2λ εie
− i

2
µt
[

cosλ
¯̂
θi
(

1− µ

2
¯̂
θkθ̂k

)

+ sin λ θ̂i
(

1 +
µ

2
¯̂
θkθ̂k

)]

ϕ

− 4bµ
[

cosλ ε̄iθ̂i

(

1− µ

2
¯̂
θkθ̂k

)

e
i
2
µt + sin λ εiθ̂i

(

1 +
µ

2
¯̂
θkθ̂k

)

e−
i
2
µt
]

ϕ . (6.11)

The relevant “passive” transformations of the holomorphic superfield ϕL are

δǫϕL = 2bµ cos 2λ
(

cosλ ǭie−
i
2
µt̂L − sinλ ǫie

i
2
µt̂L

)

θ̂iϕL ,

δεϕL = 2bµ cos 2λ
(

cosλ ε̄ie
i
2
µt̂L − sin λ εie−

i
2
µt̂L

)

θ̂iϕL

− 4bµ
(

cosλ ε̄ie
i
2
µt̂L + sin λ εie−

i
2
µt̂L

)

θ̂iϕL . (6.12)

Then the full set of the off-shell transformations of the component fields is generated by (6.12)
and by the coordinate transformations (6.6), (6.7):

δz = −
√
2 cos λ ǫkξ

ke
i
2
µt −

√
2 sinλ ǭkξ

ke−
i
2
µt,

δξi =
√
2 ǭi (i cosλ ż − bµ cos 2λ cos λ z − sinλB) e−

i
2
µt

−
√
2 ǫi (i sin λ ż − bµ cos 2λ sinλ z + cos λB) e

i
2
µt,

δB = −
√
2 cos λ ǭk

[

iξ̇k +
µ

2
(1− 2b cos 2λ) ξk

]

e−
i
2
µt

+
√
2 sinλ ǫk

[

iξ̇k − µ

2
(1 + 2b cos 2λ) ξk

]

e
i
2
µt, (6.13)

12The eigenvalue of the central charge Z1 in this case is not obliged to be the same b as in Section 5. We
hope that denoting it also by b will not give rise to any confusion.
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δz = −
√
2 cosλ εkξ

ke−
i
2
µt −

√
2 sinλ ε̄kξ

ke
i
2
µt,

δξi =
√
2 ε̄i

[

i cosλ ż + 2bµ cosλ

(

1− 1

2
cos 2λ

)

z − sinλB

]

e
i
2
µt

−
√
2 εi

[

i sin λ ż − 2bµ sinλ

(

1 +
1

2
cos 2λ

)

z + cos λB

]

e−
i
2
µt ,

δB = −
√
2 cosλ ε̄k

[

iξ̇k − µ

2
ξk + 2bµ

(

1− 1

2
cos 2λ

)

ξk
]

e
i
2
µt

+
√
2 sinλ εk

[

iξ̇k +
µ

2
ξk − 2bµ

(

1 +
1

2
cos 2λ

)

ξk
]

e−
i
2
µt . (6.14)

The new set of the transformations (6.13), (6.14) closes on the centrally extended superal-
gebra (A.4) – (A.6) with the central charges

Z1 = b cos 2λ , Z2 = b sin 2λ , Z3 = −b sin 2λ , (Z1)
2 − Z2Z3 = b2. (6.15)

The precise realization of the central charges on the superfields ϕ, ϕ̄ is given by the following
transformations

δϕ = 2ibµ (a1 cos 2λ+ a2 sin 2λ)ϕ, (6.16)

where a1, a2 are infinitesimal parameters associated with Z1 and Z2 = −Z3 .

6.2 The superconformal Lagrangian

The most general sigma-model part of the SU(2|1) invariant action of the generalized chiral

superfields ϕ
(

t, θ̂,
¯̂
θ
)

is specified by an arbitrary Kähler potential f(ϕ, ϕ̄):

S(ϕ) =

∫

dt L̃ =
1

4

∫

dζ̂ f(ϕ, ϕ̄) , (6.17)

where the SU(2|1) invariant measure is

dζ̂ = dt d2θ̂ d2
¯̂
θ
[

1 + µ cos 2λ
¯̂
θkθ̂k −

µ

2
sin 2λ

( ¯̂
θ
)2 − µ

2
sin 2λ (θ̂)2

]

. (6.18)

This measure is not invariant under the second-type SU(2|1) transformations (with µ→ −µ).
The transformations of dζ̂ can be canceled, using the inhomogeneity of the chiral superfield

ϕ transformation (6.11) for b 6= 0. One can check that the superconformal action is uniquely
specified by the following Kähler potential

f (b)
sc (ϕ, ϕ̄) = (ϕϕ̄)

1

2b . (6.19)

The corresponding full superconformally invariant off-shell component Lagrangian reads

L̃(b)
sc =

(zz̄)
1

2b
−1

4b2

[

˙̄zż +
i

2

(

ξ̄iξ̇
i − ˙̄ξiξ

i
)

+ B̄B

]

+
(2b− 1)2

64b4
(zz̄)

1

2b
−2 (ξ)2

(

ξ̄
)2

+
2b− 1

8b3
(zz̄)

1

2b
−2

[

i

2
ξ̄kξ

k ( ˙̄zz − żz̄) +
1

2
(ξ)2 B̄z̄ +

1

2

(

ξ̄
)2
Bz

]

− 2b− 1

16b2
(zz̄)

1

2b
−2 µ sin 2λ

[

z̄2 (ξ)2 + z2
(

ξ̄
)2
]

,

− (zz̄)
1

2b
−1

2b

[

µ

2
sin 2λ

(

B̄z +Bz̄
)

+
bµ2

2
cos2 2λ zz̄

]

. (6.20)
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In the particular case cos λ = 1, one comes back to the Lagrangian (5.25).

6.3 Remark

Let us make the following redefinition in (6.20)

B = B̃ + bµ sin 2λ z, and c.c.. (6.21)

The redefined superconformal Lagrangian (6.20) exactly coincides with the previously con-
structed superconformal Lagrangian (5.25) (with B → B̃). However, it is invariant under the
following modified transformations

δz = −
√
2 (cosλ ǫk + sinλ ε̄k) ξ

ke
i
2
µt −

√
2 (sinλ ǭk + cosλ εk) ξ

ke−
i
2
µt,

δξi =
√
2
(

cosλ ǭi − sin λ εi
)

(iż − bµz) e−
i
2
µt −

√
2
(

sinλ ǭi + cos λ εi
)

B̃e−
i
2
µt

−
√
2
(

sin λ ǫi − cosλ ε̄i
)

(iż + bµz) e
i
2
µt −

√
2
(

cos λ ǫi + sinλ ε̄i
)

B̃e
i
2
µt,

δB̃ = −
√
2 (cosλ ǭk − sinλ εk)

[

iξ̇k −
(

b− 1

2

)

µ ξk
]

e−
i
2
µt

+
√
2 (sin λ ǫk − cosλ ε̄k)

[

iξ̇k +

(

b− 1

2

)

µ ξk
]

e
i
2
µt , (6.22)

which are just (6.13), (6.14) rewritten in terms of B̃ defined in (6.21). These transformations
are induced by (6.6), (6.7) and the superfield transformations

δϕ̃L = 2bµ
[

(

cos λ ǭi − sin λ εi
)

θ̂i e
− i

2
µt̂L −

(

cosλ ε̄i − sin λ ǫi
)

θ̂i e
i
2
µt̂L

]

ϕ̃L . (6.23)

The newly defined chiral superfield ϕ̃L encompasses the field set (z, ξk, B̃) and is related to
(6.10) as

ϕL

(

t̂L, θ̂
)

=
[

1 + bµ sin 2λ (θ̂)2
]

ϕ̃L

(

t̂L, θ̂
)

, ϕ̃L

(

t̂L, θ̂
)

= z +
√
2 θ̂kξ

k + (θ̂)2B̃ . (6.24)

Note that the εi, ε̄
k transformations in (6.22), (6.23) are obtained from the ǫi, ǭ

k ones just by
the replacement µ → −µ in the latter, in the agreement with the general statement of Section
3.

After passing to the new independent linear combinations of the infinitesimal parameters
{ǫ, ǭ, ε, ε̄} as

ǫ̃k = cosλ ǫk + sinλ ε̄k , ε̃k = cosλ εk + sin λ ǭk , and c.c., (6.25)

the above transformations take just the form of (5.20). These new combinations of the param-
eters correspond to the following redefinition of the D(2, 1;α=− 1) supercharges

Q̃i = cosλQi − sinλ S̄i, S̃i = cosλSi − sinλ Q̄i, and c.c.. (6.26)

The redefined supercharges close on the superalgebra (A.4) – (A.6) with the single central charge
Z1 = b, i.e., the superconformal models of the generalized chiral multiplet prove to be equivalent
to the superconformal models associated with the standard chiral multiplet. One can check
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that the generator (6.3) is the U(1) automorphism generator of the su(1, 1|2) superalgebra with
the supercharges Q̃i, S̃i. Thus, as far as the superconformal SU(2|1) mechanics is concerned,
the generalized SU(2|1) chiral multiplet does not give rise to new models compared to the
“standard” chiral multiplet.

More details on connection between the standard and generalized SU(2|1) chiralities from
the superspace point of view are given in Appendix B.

7 The “mirror” multiplet (2,4,2)

The α = 0 version of the chirality conditions (5.1) or (6.1) is not covariant under the full second
SU ′(2) ∝ {F,C, C̄} and, hence, under the superconformal group D(2, 1;α=0) which necessarily
contains SU ′(2) as a subgroup.

However, one can define the “mirror” chiral multiplet (2, 4, 2) which respects the covariance
under the α = 0 superconformal group realized in the coset (3.24). Using the α = 0 covariant
derivatives (4.57), we may impose the relevant chiral conditions as

D̄1Φ̃ = D2Φ̃ = 0 . (7.1)

It is straightforward to show that at α = 0 these conditions are covariant with respect to the
superconformal symmetry PSU(1, 1|2)⋊ U(1)ext, with the internal SU(2) group generated by
{F,C, C̄} and H as the Hamiltonian. The generator I11 = −I22 plays the role of an external
automorphism U(1)ext generator, while the generators I21 , I

1
2 violate the covariance of (7.1)

and so should be thrown away. Since the SU ′(2) generators {F,C, C̄} form a subalgebra of
psu(1, 1|2), allowing the chiral superfield to have an external U(1) charge with respect to F̃
would entail the necessity to attach the whole SU ′(2) index to Φ̃. This would result in extension
of the field contents of Φ̃. In order to deal with the chiral multiplet possessing the minimal
field contents (2, 4, 2), we are so led to require that

F̃ Φ̃ = 0 . (7.2)

The conditions (7.1) amount to the existence of the chiral subspace (tL, θ1, θ̄
2), where

tL = t+ i θ̄1θ1 − i θ̄2θ2 . (7.3)

It is closed under the superconformal transformations

δtL = 2i
(

ǭ1θ1 + ǫ2θ̄
2 + ε̄1θ1e

iµtL + ε2θ̄
2e−iµtL

)

,

δθ1 = ǫ1 + ε1e
−iµtL + 2µ ε2θ̄

2θ1e
−iµtL ,

δθ̄2 = ǭ2 + ε̄2eiµtL − 2µ ε̄1θ1θ̄
2eiµtL . (7.4)

As in case of the α = −1 chiral multiplets, we extend the algebra (3.21) by the central
charge generator:

{Qi, Q̄j} = 2δij (H + µF ) + 2µ (σ3)
i
jV,

[

F, Q̄l

]

= −1

2
Q̄l ,

[

F,Qk
]

=
1

2
Qk,

[

H, Q̄l

]

=
µ

2
Q̄l ,

[

H, Qk
]

= −µ
2
Qk. (7.5)
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The superfield Φ̃ can have a non-zero charge under V :

V Φ̃ = aΦ̃. (7.6)

Then the extended algebra (7.5) is embedded in the α = 0 counterpart of (A.4) – (A.6). Like
in the coset (5.12), we place the central charge in the stability subgroup

{Qi, Q̄j,H, F, V }
{F, V } . (7.7)

The modified covariant derivatives are as follows

D1 = e−
i
2
µt

(

∂

∂θ1
− iθ̄1∂t − µ θ̄1F̃ − µ θ̄1V

)

,

D̄2 = e
i
2
µt

(

− ∂

∂θ̄2
+ iθ2∂t + µ θ2F̃ − µ θ2V

)

. (7.8)

Keeping in mind the condition (7.2), the solution of (7.1) can be written as

Φ̃
(

t, θk, θ̄
k
)

= e−aµ θ̄kθk
[

z(tL) +
√
2 θ1η

1(tL) e
i
2
µtL +

√
2 θ̄2η̄2(tL) e

− i
2
µtL − 2θ1θ̄

2B(tL)
]

. (7.9)

Thus the number a is an analog of the charge b and it can be identified with the central charge
of the conformal superalgebra su(1, 1|2) of the α = 0 case.

The α = 0 chirality-preserving odd transformations of Φ̃ read

δǫΦ̃ = aµ
(

ǭ1θ1 − ǫ2θ̄
2
)

Φ̃− aµ
(

ǭ2θ2 − ǫ1θ̄
1
)

Φ̃,

δεΦ̃ = − 3aµ
(

ε̄1θ1e
iµt − ε2θ̄

2e−iµt
)

(

1− µ

3
θ̄kθk

)

Φ̃

− aµ
(

ε̄2θ2e
iµt − ε1θ̄

1e−iµt
) (

1− 3µ θ̄kθk
)

Φ̃. (7.10)

They generate the off-shell transformations of the component fields

δz = −
√
2 ǫ1η

1 e
i
2
µt −

√
2 ǭ2η̄2 e

− i
2
µt −

√
2 ε1η

1 e−
i
2
µt −

√
2 ε̄2η̄2 e

i
2
µt,

δη1 =
√
2 ǭ1 (iż − aµz) e−

i
2
µt +

√
2 ǭ2Be−

i
2
µt +

√
2 ε̄1 (iż + aµz) e

i
2
µt +

√
2 ε̄2Be

i
2
µt,

δη̄2 =
√
2 ǫ2 (iż + aµz) e

i
2
µt −

√
2 ǫ1Be

i
2
µt +

√
2 ε2 (iż − aµz) e−

i
2
µt −

√
2 ε1Be

− i
2
µt,

δB = −
√
2 ǫ2

[

iη̇1 +

(

a− 1

2

)

µ η1
]

e
i
2
µt −

√
2 ε2

[

iη̇1 −
(

a− 1

2

)

µ η1
]

e−
i
2
µt

+
√
2 ǭ1

[

i ˙̄η2 −
(

a− 1

2

)

µ η̄2

]

e−
i
2
µt +

√
2 ε̄1

[

i ˙̄η2 +

(

a− 1

2

)

µ η̄2

]

e
i
2
µt. (7.11)

The superconformally invariant superfield action

S(α=0, a)
sc (Φ̃) =

∫

dt L(α=0, a)
sc = −1

4

∫

dt d2θ d2θ̄
(

Φ̃ ¯̃Φ
)

1

2a

(7.12)

yields the following component superconformal Lagrangian:

L(α=0, a)
sc =

(zz̄)
1

2a
−1

4a2

[

˙̄zż +
i

2

(

η̄iη̇
i − ˙̄ηiη

i
)

+ B̄B

]

− (2a− 1)2

64a4
(zz̄)

1

2a
−2 (η)2 (η̄ )2

+
2a− 1

8a3
(zz̄)

1

2a
−2

[

i

2

(

η̄1η
1 − η̄2η

2
)

( ˙̄zz − żz̄) + η̄2η
1B̄z̄ + η̄1η

2Bz

]

− µ2

4
(zz̄)

1

2a . (7.13)
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One can cast it into the form of the Lagrangian (5.25) by passing to the fermions ξi
′

with the
primed doublet indices as

η1 = ξ1
′

, η̄1 = ξ̄1′ , η2 = ξ̄2′, η̄2 = ξ2
′

, (7.14)

(ξi′) = ξ̄i′ , (ηi) = η̄i . (7.15)

This redefinition makes manifest the property that the fermionic fields are transformed as
doublets of the SU ′(2) group with the generators {F,C, C̄}.

As in the case of α = −1, we can add the superconformal superpotential term

Spot(α=0)
sc (Φ̃) = s

∫

dtL dθ1 dθ̄
2 ln Φ̃L + c.c. ⇒ Lpot(α=0)

sc = 2s

(

B

z
+
η̄2η

1

z2

)

+ c.c., (7.16)

which yields on shell the standard conformal mechanics potential in addition to the oscillator-
type term ∼ µ2 coming from the superconformal superfield kinetic term. The latter can be
reduced to the free one as in the previous cases.

Thus the superconformal action at α = 0 can be constructed using the superfield approach
associated with the α = 0 supercoset (3.24), while the α = −1 action (5.25) was based on the
SU(2|1) supercoset. In the parabolic limit µ = 0, both supercosets are reduced to the standard
flat N = 4, d = 1 superspace.

8 D-module representation approach

Here we sketch a different approach to the d = 1 superconformal actions based solely on the
component field considerations [22, 23, 14].

8.1 The N = 4 linear supermultiplets

As a preamble, it is instructive, following ref. [14], to give a concise account of the general
superconformal properties of the set of linear N = 4 supermultiplets (k, 4, 4− k) for k =
0, 1, 2, 3, 4, despite the fact that in the present paper we deal with the cases k = 1, 2 only.

The linear supermultiplets (k, 4, 4− k) for k = 0, 1, 2, 3, 4 exist in the parabolic and hy-
perbolic/trigonometric variants [14]. The parabolic variant leads to actions which are both
superconformally invariant and show up the manifest Poincaré supersymmetry. The hyper-
bolic/trigonometric variants lead to superconformally invariant actions in which the d = 1
Poincaré supersymmetry is implicit (the corresponding supercharges are not a “square root” of
the canonical Hamiltonian as the time-translation generator) so they look non-supersymmetric
or weakly supersymmetric. The potentials are bounded from below in the trigonometric version
(i.e., they are well-behaved). They are unbounded (bad-behaved) in the hyperbolic version. In
the parabolic case the Hamiltonian is a Cartan generator of the conformal so(2, 1) subalgebra.
In the hyperbolic/trigonometric case the canonical Hamiltonian is a root generator of so(2, 1).

The connection of these N = 4 linear supermultiplets with the N = 4 superconformal
algebras and the corresponding scaling dimensions λD is as follows [22, 23, 14]:

• (0, 4, 4): D (2, 1;α=2λD);

• (1, 4, 3): D (2, 1;α=λD). At α = −1 and α = 0 , the extra inhomogeneous constant
parameter c is allowed;
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• (2, 4, 2): su(1, 1|2). The scaling dimension λD is associated with a central charge of
su(1, 1|2) as λD = −b ;

• (3, 4, 1): D (2, 1;α=− λD);

• (4, 4, 0): D (2, 1;α=− 2λD).

For all multiplets except (2, 4, 2), the superconformal algebra at α = −1, 0 can be reduced to
the superalgebra psu(1, 1|2).

Another type of inhomogeneous linear transformation [14] is only present at λD = 0. The
inhomogeneous parameter is ρ. The supermultiplets (k, 4, 4− k)ρ carry a representation of
psu(1, 1|2) for k = 0, 1, 3, 4 and its central-extended version su(1, 1|2) for k = 2. One should
note that the superconformal actions based on (k, 4, 4− k) at a given λD are not defined at
λD = 0. On the other hand, the superconformal actions based on (k, 4, 4− k)ρ are well-defined.

8.2 Superconformally invariant (2, 4, 2) actions from the D-module

approach

In [14], all hyperbolic D-module representations for the N = 4 linear multiplets (k, 4, 4− k)
were obtained and the trigonometric D-module representations can be easily derived from the
hyperbolic representations. Then one can construct the hyperbolic/trigonometric supercon-
formal actions proceeding from the D-module representations. The method of construction is
described in [22]. Some superconformal actions of the supermultiplet (1, 4, 3) were found in
this way in [14]. Here we present the realization of the N = 4 superconformal algebras and
perform the construction of the superconformal actions for the supermultiplet (2, 4, 2) in this
alternative approach.

We use the same notation and definitions for the component fields and superconformal
generators as in the previous Sections. The action of generators of the conformal algebra are
given below:

Hz = iż, Hξi = iξ̇i, HB = iḂ,

T z = e−iµt (iż − bµz) , T ξi = e−iµt

[

iξ̇i −
(

b− 1

2

)

µξi
]

, TB = e−iµt
[

iḂ − (b− 1)µB
]

,

T̄ z = eiµt (iż + bµz) , T̄ ξi = eiµt
[

iξ̇i +

(

b− 1

2

)

µξi
]

, T̄B = eiµt
[

iḂ + (b− 1)µB
]

. (8.1)

The fermionic generators are specified by

Qiz = −
√
2 ξie

i
2
µt, Qiξk =

√
2 εikBe

i
2
µt, QiB = 0 ,

Q̄iz = 0 , Q̄iξ
k = −

√
2 δki (iż − bµz) e−

i
2
µt, Q̄iB = −

√
2 εik

[

iξ̇k −
(

b− 1

2

)

µ ξk
]

e−
i
2
µt,

Siz = −
√
2 ξie−

i
2
µt, Siξk =

√
2 εikBe−

i
2
µt, SiB = 0 ,

S̄iz = 0 , S̄iξ
k = −

√
2 δki (iż + bµz) e

i
2
µt, S̄iB = −

√
2 εik

[

iξ̇k +

(

b− 1

2

)

µ ξk
]

e
i
2
µt.(8.2)

Since all (2, 4, 2) Lagrangians can be reduced to the free Lagrangian (5.26), it is enough to
consider the free case b = 1/2. Then the superconformally invariant action is generated from
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the prepotential f(z, z̄) by acting with the supercharges Qi on the propagating bosons z, z̄ as

L(b=1/2)
sc =

1

16
QiQ

iQ̄kQ̄k f(z, z̄) . (8.3)

The prepotential f(z, z̄) can be found from the constraint that the action of conformal gener-
ators on the Lagrangian produces a total time-derivative:

T L(b=1/2)
sc =

d

dt
M, T̄ L(b=1/2)

sc =
d

dt
M̄ , (8.4)

where the explicit form of M is of no interest for our purposes. Solving these constraints, we
obtain the prepotential

f(z, z̄) = zz̄ . (8.5)

The corresponding superconformal action (8.3) generated from the D-module representations
can be shown to coincide with the superconformal action (5.26) derived from the SU(2|1)
superspace approach.

The superpotential term (5.30) can also be equivalently constructed using the D-module
approach. We define

Lpot
sc =

1

2
QiQ

i h(z) +
1

2
Q̄iQ̄i h̄(z̄) (8.6)

and impose the conformal constraints in the same way as for (8.4). As their solution we uniquely
obtain

h(z) = −ν ln z , h̄(z̄) = −ν̄ ln z̄ . (8.7)

It is direct to check that (8.6) for such h(z) coincides with (5.30).
Note that the superfield and D-module approaches can be regarded as complementary to

each other. The second method directly yields the component off-shell Lagrangians. On the
other hand, the superfield techniques bring to light some properties which are hidden in the
component formulations. For instance, the reducibility of the general sigma-model type action
of the multiplet (2, 4, 2) to the free one is immediately seen, when using the chiral SU(2|1)
superfield language, as in Sections 5 - 7.

9 Summary and outlook

In this paper, we presented the superspace realization of the trigonometric-type N = 4, d = 1
superconformal symmetry. This realization can be given in terms of the SU(2|1) superspace
at α 6= 0 or in terms of the U(1) deformed flat N = 4, d = 1 superspace at α = 0. In the
contraction limit µ = 0, the relevant superconformal models are reduced to the standard models
of the parabolic superconformal mechanics, with the superconformal Lagrangians constructed
out of the standard N = 4, d = 1 superfields. The main advantage of the SU(2|1) superfield
approach (or its degenerate α = 0 version) is that it automatically yields the trigonometric-
type realization of the superconformal symmetry, with the correct-sign harmonic oscillator term
∼ µ2 in the component actions.
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Our construction is based on the new observation that the most general N = 4, d = 1
superconformal algebra D(2, 1;α) at α 6= 0 in the SU(2|1) superspace realizations can be
represented as a closure of its two su(2|1) subalgebras, one of which defines the superisometry
of the underlying SU(2|1) superspace while the other is obtained from the first one by the
reflection of the contraction parameter as µ → −µ. This suggests the simple selection rule for
singling out the superconformally invariant actions in the general set of the SU(2|1) invariant
actions constructed in [4, 5]. The superconformal SU(2|1) actions are those which are even
functions of µ. The superalgebra D(2, 1;α=0) ∼ psu(1, 1|2)⊕su(2) (and its central extensions)
admit a similar closure structure, this time in terms of two µ-dependent U(1) deformed flat
N = 4, d = 1 superalgebras.

We gave an off-shell superfield formulation of the trigonometric superconformal actions of
the multiplet (1, 4, 3) some of which were constructed earlier at the component level in [14],
and presented new trigonometric superconformal actions for the chiral multiplet (2, 4, 2). For
the latter multiplet the superconformal actions exists only for α = −1 and α = 0, and they
are always reduced to a sum of the free kinetic (sigma-model type) SU(2|1) superfield action
and the superconformal superfield potential, yielding, in the bosonic component sector, a sum
of the standard conformal mechanics potential ∼ 1

|z|2 and the oscillator term ∼ µ2|z|2. The

SU(2|1) superfield approach provides a simple proof of this notable property. Another feature
easily revealed in the SU(2|1) superfield approach is that the superconformal α = −1 models
corresponding to the generalized (2, 4, 2) chirality [5] proved to be equivalent to the supercon-
formal models associated with the standard chiral SU(2|1) multiplet. The common property
of all superconformal sigma-model type (2, 4, 2) actions (at α = −1 and α = 0) is that they
exist only on account of non-zero central charge in the corresponding superconformal algebras
su(1, 1|2). We also presented an alternative way of deriving the component superconformal
(2, 4, 2) actions, based on the D-module representation approach developed in [14, 22, 23], and
found the nice agreement with the superfield considerations.

It would be interesting to use the SU(2|1) superspace approach to construct analogous mod-
els with the trigonometric realization of superconformal symmetry for other off-shell SU(2|1)
supermultiplets, with the field contents (3, 4, 1) and (4, 4, 0), as well as the multi-particle gen-
eralizations of all such models (including those studied in the present paper). Also, it seems
important to better understand the relationship between the SU(2|1) superfield approach and
the component approach based on the D-module representations of the superconformal sym-
metries, including D(2, 1;α). Finding out the possible links with the superconformal structures
in the higher-dimensional theories based on curved analogs of flat rigid supersymmetries (see,
e.g., [24]) is also an urgent subject for the future study.
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A Central extension of superconformal algebra

At α = −1 (or α = 0) it is possible to extend the superalgebra D (2, 1;α) by additional central
charges. In this particular case, the (anti)commutators (3.1), (3.2) can be cast in the form

{Qαii′ , Qβjj′} = 2
(

ǫijǫi′j′Tαβ − ǫαβǫi′j′Jij − ǫαβǫijCi′j′

)

,

[Tαβ, Qγii′ ] = −i ǫγ(αQβ)ii′ , [Tαβ , Tγδ] = i (ǫαγTβδ + ǫβδTαγ) ,

[Jij, Qαki′] = −i ǫk(iQαj)i′ , [Jij, Jkl] = i (ǫikJjl + ǫjlJik) , (A.1)

where the central charges Ci′j′ commute with all other generators. They form a vector with
respect to the automorphism SU ′(2)ext transformations acting on the indices i′, j′. The norm
of the vector Ci′j′ of central charges,

|C|2 := 1

2
C i′k′Ci′k′ , (A.2)

is an invariant of these SU ′(2)ext transformations. Hence, in the case of constant central charges,
we can choose the SU ′(2)ext frame in such a way that only one non-vanishing central charge
remains, e.g., its third component:

C1′2′ 6= 0 , C1′1′ = C2′2′ = 0 . (A.3)

Simultaneously, SU ′(2)ext is reduced to the automorphism U(1)ext.
One can equivalently rewrite the superalgebra (A.1) as the appropriate extension of (3.9) –

(3.12) at α = −1:

{Qi, Q̄j} = 2µI ij + 2δij (H− µZ1) , {Si, S̄j} = −2µI ij + 2δij (H + µZ1) ,

{Si, Q̄j} = 2δijT, {Qi, S̄j} = 2δijT̄ ,

{Qi, Sk} = 2µεikZ2 , {Q̄j, S̄k} = 2µεjkZ3 , (A.4)

[

I ij, I
k
l

]

= δkj I
i
l − δilI

k
j ,

[

I ij, Q̄l

]

=
1

2
δijQ̄l − δilQ̄j ,

[

I ij, Q
k
]

= δkjQ
i − 1

2
δijQ

k,

[

I ij, S̄l

]

=
1

2
δijS̄l − δil S̄j ,

[

I ij, S
k
]

= δkj S
i − 1

2
δijS

k, (A.5)

[

T, T̄
]

= −2µH, [H, T ] = µT,
[

H, T̄
]

= −µT̄ ,
[

H, S̄l

]

= −µ
2
S̄l ,

[

H, Sk
]

=
µ

2
Sk,

[

H, Q̄l

]

=
µ

2
Q̄l ,

[

H, Qk
]

= −µ
2
Qk,

[

T,Qi
]

= −µSi,
[

T, S̄j

]

= −µQ̄j ,
[

T̄ , Q̄j

]

= µS̄j ,
[

T̄ , Si
]

= µQi. (A.6)

According to (3.8), the central charges appearing here are related to the central charges defined
in (A.1) as

C1′2′ = C2′1′ = iZ1 , C1′1′ = iZ2 , C2′2′ = iZ3 , |C|2 = (Z1)
2 − Z2Z3 . (A.7)
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B More on SU(2|1) chiralities
As was demonstrated, the superconformal SU(2|1) models of the (2, 4, 2) superfield defined by
the generalized (central-charge extended) chirality condition (6.1) are in fact equivalent to those
constructed on the basis of the superfield subjected to the “standard” chirality condition (5.1)
(or its central-charge extended version (5.15)). So in the superconformal case the parameter λ
entering (6.1), (6.2), (6.8) is unessential. This is in contrast with the pure SU(2|1) invariant
models in which λ is a physical parameter specifying a new class of such models [5].

Let us discuss the interplay between two types of the SU(2|1) chirality in more detail,

based upon the superspace considerations. It will be useful to pass to the coordinates {t, θ̃j , ¯̃θi}
defined by the relations (3.38). Being specialized to α = −1, these relations read:

θ̃j = e
i
2
µtθj

(

1− µ

2
θ̄kθk

)

= e
i
2
µtLθj , tL = t+ i

¯̃
θiθ̃i ,

¯̃
θi = e−

i
2
µtθ̄i

(

1− µ

2
θ̄kθk

)

= e−
i
2
µtR θ̄i , tR = t− i

¯̃
θiθ̃i . (B.1)

The SU(2|1) supercharges (3.39) are rewritten as

Qi = e
i
2
µt

{[

1− µ

2
¯̃
θkθ̃k −

µ2

16
(θ̃)2

( ¯̃
θ
)2
]

∂

∂θ̃i
− µ

¯̃
θi
¯̃
θk

∂

∂
¯̃
θk

+ i
¯̃
θi
(

1 +
µ

2
¯̃
θkθ̃k

)

∂t

}

,

Q̄j = e−
i
2
µt

{[

1− µ

2
¯̃
θkθ̃k −

µ2

16
(θ̃)2

( ¯̃
θ
)2
]

∂

∂
¯̃
θj

+ µ θ̃j θ̃k
∂

∂θ̃k
+ iθ̃j

(

1 +
µ

2
¯̃
θkθ̃k

)

∂t

}

.(B.2)

The extra generators Si completing SU(2|1) to D(2, 1;α=− 1) are represented in this basis as
S(µ) = Q(−µ). The covariant derivatives (5.13) take the form

Di
Z =

[

1 +
µ

2
¯̃θkθ̃k −

µ2

16
(θ̃)2

( ¯̃θ
)2
](

∂

∂θ̃i
− i ¯̃θi∂t + µ ¯̃θiZ1

)

,

D̄Zj =

[

1 +
µ

2
¯̃θkθ̃k −

µ2

16
(θ̃)2

( ¯̃θ
)2
](

− ∂

∂ ¯̃θj
+ iθ̃j∂t − µ θ̃jZ1

)

. (B.3)

We ignore the matrix SU(2) generators Ĩ lj in Di, D̄j, because the generalized chiral superfields
defined by (6.1) cannot carry external SU(2) indices owing to the compatibility relation

{ ¯̃Dk,
¯̃Dj} = −2µ sin 2λ Ĩij , and c.c..

Using the explicit expressions (B.3), the generalized chirality condition (6.1) with ¯̃Dj defined

according to (6.8) can be rewritten in the basis {t, θ̃j , ¯̃θi} as

¯̃Djϕ =
[

1 +
µ

2
¯̃
θkθ̃k −

µ2

16
(θ̃)2

( ¯̃
θ
)2
][

cos λ

(

− ∂

∂
¯̃
θj

+ iθ̃j∂t − µ θ̃jZ1

)

− εji sinλ

(

∂

∂θ̃i
− i ¯̃θi∂t + µ ¯̃θiZ1

)

]

ϕ = 0 . (B.4)

It is easy to check that the coordinates θ̂i defined in (6.5) and parametrizing the left chiral super-
space (6.4) can be represented, for generic λ, as a particular SU(2) rotation of the coordinates

θ̃j ,
¯̃θi:

θ̂i = cosλ θ̃i + sin λ ¯̃θi ,
¯̂
θi = cosλ ¯̃θi − sinλ θ̃i. (B.5)
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In the basis {t, θ̂j, ¯̂θi} the condition (B.4) becomes

¯̃Djϕ =

[

1 +
µ

2
cos 2λ

¯̂
θkθ̂k −

µ

4
sin 2λ

(

¯̂
θk
¯̂
θk + θ̂kθ̂

k
)

− µ2

16
(θ̂)2

( ¯̂
θ
)2
]

×
(

− ∂

∂
¯̂
θj

+ iθ̂j∂t − µ θ̂jZ1

)

ϕ = 0 . (B.6)

Comparing (B.6) with the “standard” chirality constraint (5.15) written through D̄Zj from
(B.3), we see that they have the same form, up to an unessential non-singular scalar factor and
the change of Grassmann coordinates as θ̃ ↔ θ̂.

One can define the new supercharges

Q̃i = cosλQi − sinλ S̄i, and c.c., (B.7)

and check that they coincide with the generators (B.2) in which the same substitution (θ̃, ¯̃θ) →
(θ̂,

¯̂
θ) has been performed. The same applies to the S̃i supercharges

S̃i = cosλSi − sin λ Q̄i, and c.c., (B.8)

and the corresponding conformal subgroup generators. We also observe that the U(1) generator
(6.3) takes the form

F ′ = F cos 2λ+
1

2

(

C + C̄
)

sin 2λ =
1

2

(

¯̂
θk

∂

∂
¯̂
θk

− θ̂k
∂

∂θ̂k

)

, (B.9)

which, up to the coordinate change just mentioned, coincides with the definition (3.41) of F .
As was shown in Section 6.3, the transformations (6.22) of the component fields under the

supercharges (B.7), (B.8) with the parameters ǫ̃i, ε̃i defined in (6.25) have the same form as the
original (Q, S) transformations (5.20) with the parameters ǫi, εi . Accordingly, the superfield
(Q, S) transformations (5.18) of ΦL can be given the same form as the transformations (6.23)
of the superfield ϕ̃L(t̂L, θ̂) under the supercharges (B.7), (B.8) by rewriting (5.18) through the
coordinates

(

tL, θ̃
)

:

δΦL

(

tL, θ̃
)

= 2bµ
(

ǭiθ̃i e
− i

2
µtL − ε̄iθ̃i e

i
2
µtL

)

ΦL

(

tL, θ̃
)

. (B.10)

Thus we observe the full similarity between ΦL and ϕ̃L modulo the change (tL, θ̃) ↔ (t̂L, θ̂) .

This phenomenon can be summarized as follows. In the basis {t, θ̂j , ¯̂θi} the rotated super-
conformal generators (B.7), (B.8) have the same form as the original supercharges Qi, Si in the

basis {t, θ̃j , ¯̃θi}. The superconformal subclass of the actions of the generalized multiplet (2, 4, 2)
is invariant under both Q and S supersymmetries, hence it is invariant under their Q̃ and S̃
realizations as well. The generalized chiral SU(2|1) superfield defined for the Q, S realization
of the superconformal group looks just as the standard chiral SU(2|1) superfield with respect
to the equivalent Q̃, S̃ realization. So the superconformal (2, 4, 2) actions actually cannot dis-
tinguish on which kind of the chiral SU(2|1) superfield they are built and, respectively, cannot
involve any dependence on the parameter λ .
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To make the latter property manifest, let us proceed from the superconformal action of

generalized chiral superfield ϕ(t, θ̂,
¯̂
θ) as the solution (6.10) of (B.6)

S(b)
sc (ϕ) =

1

4

∫

dζ̂ (ϕϕ̄)
1

2b , (B.11)

where the integration measure dζ̂ in the SU(2|1) superspace basis {t, θ̂, ¯̂θ} is defined in (6.18).
Since the component action (6.20) has no dependence on λ, the λ dependence of the superfield
action (B.11) is also expected to be fake. Using the relations (6.10) and (6.18), we rewrite
(B.11) through the (anti)holomorphic superfields ϕL, ϕ̄R as

S(b)
sc (ϕ) =

1

4

∫

dt d2θ̂ d2
¯̂
θ
[

1− µ2

4
(
¯̂
θ)2(θ̂)2

][

1− µ

2
sin 2λ(θ̂)2

][

1− µ

2
sin 2λ(

¯̂
θ)2

]

(ϕLϕ̄R)
1

2b .(B.12)

One can absorb the (anti)holomorphic factors in this action into the redefinition of ϕ̄R, ϕL as
in (6.24) and cast (B.12) in the following final form

S(b)
sc (ϕ) =

1

4

∫

dt d2θ̂ d2
¯̂
θ
(

1 + µ
¯̂
θkθ̂k

)

(ϕ̃ ¯̃ϕ)
1

2b . (B.13)

Here, the newly introduced superfield ϕ̃ is a solution of (B.6) with Z1ϕ̃L = b ϕ̃L:

¯̃Djϕ̃ = 0 , ⇒ ϕ̃
(

t, θ̂,
¯̂
θ
)

= e−bµ
¯̂
θk θ̂kϕ̃L

(

t̂L, θ̂
)

, (B.14)

and it does not display any λ dependence, equally as the action (B.13). Comparing it with the

superconformal action (5.21), (5.24) rewritten in the basis {t, θ̃i, ¯̃θk},

S(b)
sc (Φ) =

1

4

∫

dt d2θ̃ d2 ¯̃θ
(

1 + µ ¯̃θkθ̃k

)

(

ΦΦ̄
)

1

2b , Φ
(

t, θ̃, ¯̃θ
)

= e−bµ ¯̃θiθ̃iΦL

(

tL, θ̃
)

, (B.15)

where the expression (3.43) for the dζ̃ integration measure was used, we observe its identity
with (B.13), up to the interchange θ̃ ↔ θ̂, as was anticipated above. Note that the integration
measure in (B.13),

dt d2θ̂ d2
¯̂
θ
(

1 + µ
¯̂
θkθ̂k

)

, (B.16)

is invariant with respect to SU(2|1) generated by the rotated supercharges (B.7).
The non-conformal SU(2|1) invariant chiral actions are invariant under the transformations

generated by Qi and Q̄i but not under the Q̃i,
¯̃Qi transformations since the definition of the

latter involve the superconformal generators Si and S̄i. Hence they differ for the standard
and generalized chiral (2, 4, 2) multiplets and depend on λ as an essential parameter. It labels
non-equivalent SU(2|1) actions and the corresponding SQM models [5].

C Hyperbolic superconformal mechanics

The hyperbolic superconformal mechanics can be obtained by substituting the deformation
parameter in the trigonometric models as µ → iµ . One can see that the superconformal
generators defined in Section 3.2 go over to the new generators

Qi −→ Πi, Q̄k −→ Θ̄k , Si −→ Θi, S̄k −→ Π̄k ,

T −→ T2 , T̄ −→ T1 , H −→ Hh , (C.1)
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which behave under the Hermitian conjugation as

(

Πk
)†

= Π̄k ,
(

Θk
)†

= Θ̄k ⇒ (T2)
† = T2 , (T1)

† = T1 , (Hh)
† = Hh . (C.2)

In this basis, the basic anticommutation relations of D (2, 1;α) can be rewritten as

{Πi, Θ̄j} = −2iαµ I ij + 2δij
[

Hh + i (1 + α)µF
]

,

{Θi, Π̄j} = 2iαµ I ij + 2δij
[

Hh − i (1 + α)µF
]

,

{Θi, Θ̄j} = 2δijT2 , {Πi, Π̄j} = 2δijT1 ,

{Πi,Θk} = −2i (1 + α)µ εikC, {Θ̄j, Π̄k} = 2i (1 + α)µ εjkC̄. (C.3)

The bosonic truncation of the corresponding conformal group generators (3.34) yields their
hyperbolic realization:

Hh = i∂t , T1 = ie−µt∂t , T2 = ieµt∂t . (C.4)

The corresponding hyperbolic realization of (3.35) now reads

Ĥ =
i

2
(1 + cosh µt ) ∂t , K̂ = − 2i

µ2
(1− coshµt ) ∂t , D̂ =

i

µ
sinh µt ∂t , µ 6= 0 . (C.5)

In contrast to the trigonometric case, the time-translation generator Hh is now

Hh = Ĥ − µ2

4
K̂. (C.6)

Due to the minus sign before µ2K̂, we face the quantum mechanical problem in which the
potentials accompanying the kinetic terms are not bounded from below, like in the parabolic
case [11]. This difficulty could of course be cured in a similar way by passing to

Htrig = Ĥ +
µ2

4
K̂ = coshµt ∂t (C.7)

as the correct time-evolution operator. The discrete energy spectrum with the canonical Hamil-
tonian can be obtained only in the trigonometric models of superconformal mechanics. Note
that D (2, 1;α) contains no any self-conjugated subalgebra with four real supercharges, in which
Hh would appear on the r.h.s. of the basic anticommutator, in contrast to the parabolic and
trigonometric cases.

C.1 Example

As an instructive example, we consider the simplest free case b = 1/2 of the multiplet (2, 4, 2)

L(b=1/2)
sc = ˙̄zż +

i

2

(

ξ̄iξ̇
i − ˙̄ξiξ

i
)

+ B̄B − µ2

4
zz̄ , (C.8)

and the relevant superconformal transformations

δz = −
√
2 ǫkξ

ke
i
2
µt −

√
2 εkξ

ke−
i
2
µt,

δξi =
√
2 ǭi

(

iż − µ

2
z
)

e−
i
2
µt −

√
2 ǫiBe

i
2
µt +

√
2 ε̄i

(

iż +
µ

2
z
)

e
i
2
µt −

√
2 εiBe−

i
2
µt,

δB = −
√
2 i ǭkξ̇

ke−
i
2
µt −

√
2 i ε̄kξ̇

ke
i
2
µt. (C.9)
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These transformations correspond to the superalgebra (A.4) – (A.6) with Z1 = 1/2 .
After the change µ→ iµ in (C.8), (C.9), we obtain the hyperbolic mechanics Lagrangian as

L
(b=1/2)
sc (h) = ˙̄zż +

i

2

(

ξ̄iξ̇
i − ˙̄ξiξ

i
)

+ B̄B +
µ2

4
zz̄ , (C.10)

and the superconformal transformations as

δz = −
√
2 υkξ

ke−
1

2
µt −

√
2 ςkξ

ke
1

2
µt,

δξi =
√
2 i ῡi

(

ż +
µ

2
z
)

e−
1

2
µt −

√
2 υiBe−

1

2
µt +

√
2 i ς̄ i

(

ż − µ

2
z
)

e
1

2
µt −

√
2 ς iBe

1

2
µt,

δB = −
√
2 i ῡkξ̇

ke−
1

2
µt −

√
2 i ς̄kξ̇

ke
1

2
µt. (C.11)

The parameters υ, ῡ and ς, ς̄ correspond to the supercharges Π, Π̄ and Θ, Θ̄ , respectively. Note
that the original SU(2|1) transformations are embedded in (C.11) as

δz = −ǫkξk
(

e−
1

2
µt + ie

1

2
µt
)

, δB = −iǭk ξ̇k
(

e−
1

2
µt − ie

1

2
µt
)

,

δξi = i ǭi
[

ż
(

e−
1

2
µt − ie

1

2
µt
)

+
µ

2
z
(

e−
1

2
µt + ie

1

2
µt
)]

− ǫiB
(

e−
1

2
µt + ie

1

2
µt
)

, (C.12)

where ǫk := 1√
2
(υk − iςk) .
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